The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Free radical intermediates of phenytoin and related teratogens. Prostaglandin H synthase-catalyzed bioactivation, electron paramagnetic resonance spectrometry, and photochemical product analysis.

Phenytoin and related xenobiotics can be bioactivated by embryonic prostaglandin H synthase (PHS) to a teratogenic free radical intermediate. The mechanism of free radical formation was evaluated using photolytic oxidation with sodium persulfate and by EPR spectrometry. Characterization of the products by mass spectrometry suggested that phenytoin photolyzes to a nitrogen-centered radical that rapidly undergoes ring opening to form a carbon-centered radical. PHS-1 was incubated with teratogen (phenytoin, mephenytoin, trimethadione, phenobarbital, and major metabolites) or its vehicle and the free radical spin trap alpha-phenyl-N-t-butylnitrone, and incubations were analyzed by EPR spectrometry. There was no alpha-phenyl-N-t-butylnitrone radical adduct in control incubations. For phenytoin, a putative unstable nitrogen-centered radical adduct and a stable carbon-centered radical adduct were detected. Free radical spin adducts also were detected for all other teratogens and metabolites except carbamazepine. The PHS inhibitor eicosatetraynoic acid abolished the free radical EPR signal. Incubation of 2'-deoxyguanosine with phenytoin and PHS-1 resulted in a 5-fold increase in its oxidation to 8-hydroxy-2'-deoxyguanosine. This is the first direct chemical evidence for PHS-catalyzed bioactivation of phenytoin and related teratogens to a free radical intermediate that initiates DNA oxidation, which may constitute a common molecular mechanism of teratologic initiation.[1]

References

 
WikiGenes - Universities