The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Comparison of the effects of D-mannoheptulose and its hexaacetate ester on D-glucose metabolism and insulinotropic action in rat pancreatic islets.

It was recently, and surprisingly, found that D-mannoheptulose did not affect D-glucose metabolism and insulinotropic action in pancreatic islets incubated at a low concentration of D-glucose. To explain this finding, the metabolism and secretory response to the hexose were investigated in rat islets exposed to D-mannoheptulose hexaacetate, which was recently found to inhibit D-glucose catabolism in cells that are otherwise fully resistant to the heptose. At a high concentration of D-glucose (16.7 mmol/l), the utilisation of D-[5-(3)H]glucose and oxidation of D-[U-14C]glucose, as well as the insulinotropic action of the hexose, were affected less by D-mannoheptulose tetraacetate than by unesterified D-mannoheptulose. This coincided with a reduced uptake of the ester by intact islets and a lower rate of hydrolysis of the ester in islet homogenates compared with findings in other monosaccharide esters such as D-glucose pentaacetate. At a low concentration of D-glucose (2.8 mmol/l), D-mannoheptulose hexaacetate was slightly more efficient than the unesterified heptose in reducing D-glucose catabolism, but still failed to suppress the secretory response to the hexose. These findings do not necessarily mean that unesterified D-mannoheptulose enters beta-cells more efficiently at high than at low extracellular D-glucose concentrations, especially if possible differences in the respective contributions of distinct islet cell types to the overall catabolism of D-glucose by whole islets is allowed for. These data do not rule out the possibility that D-glucose phosphorylation is more resistant to D-mannoheptulose in beta cells incubated at a low than a high concentration, independently of any difference in the intracellular concentration of the heptose. However, the mechanism of this resistance is still not explained.[1]

References

 
WikiGenes - Universities