The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Expression and trans-synaptic regulation of P2x4 and P2z receptors for extracellular ATP in parotid acinar cells. Effects of parasympathetic denervation.

Trans-synaptic regulation of muscarinic, peptidergic, and purinergic responses after denervation has been reported previously in rat parotid acinar cells (McMillian, M. K., Soltoff, S. P., Cantley, L. C., Rudel, R., and Talamo, B. R. (1993) Br. J. Pharmacol. 108, 453-461). Characteristics of the ATP-mediated responses and the effects of parasympathetic denervation were further analyzed through assay of Ca2+ influx, using fluorescence ratio imaging methods, and by analysis of P2x receptor expression. ATP activates both a high affinity and a low affinity response with properties corresponding to the recently described P2x4 and the P2z (P2x7)-type purinoceptors, respectively. Reverse transcription-polymerase chain reaction analysis reveals mRNA for P2x4 as well as P2x7 subtypes but not P2x1, P2x2, P2x3, P2x5, or P2x6. P2x4 protein also is detected by Western blotting. Distribution of the two types of ATP receptor responses on individual cells was stochastic, with both high and low affinity responses on some cells, and only a single type of response on others. Sensitivity to P2x4-type activation also varied even among cells responsive to low concentrations of ATP. Parasympathetic denervation greatly enhanced responses, tripling the proportion of acinar cells with a P2x4-type response and increasing the fraction of highly sensitive cells by 7-fold. Moreover, P2x4 mRNA is significantly increased following parasympathetic denervation. These data indicate that sensitivity to ATP is modulated by neurotransmission at parasympathetic synapses, at least in part through increased expression of P2x4 mRNA, and suggest that similar regulation may occur at other sites in the nervous system where P2x4 receptors are widely expressed.[1]

References

 
WikiGenes - Universities