The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Attenuation-corrected 99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose.

OBJECTIVES: The purpose of this study was to assess the efficacy of attenuation-corrected (AC) technetium-99m (99mTc)-tetrofosmin single-photon emission computed tomography (SPECT) in detecting viable myocardium compared to 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). BACKGROUND: The role of 99mTc-labeled perfusion tracers in the assessment of myocardial viability remains controversial. Attenuation artifacts affect the diagnostic accuracy of SPECT images. METHODS: Twenty-four patients with coronary artery disease (mean left ventricular ejection fraction 30%) underwent resting 99mTc-tetrofosmin SPECT and FDG PET imaging. Both AC and non-attenuation-corrected (NC) SPECT images were generated. RESULTS: Using a 50% threshold for viability by FDG PET, the percentage of concordant segments of viability between 99mTc-tetrofosmin and FDG on the patient basis increased from 79.8%+/-14.0% (mean+/-SD) on the NC images to 90.8%+/-10.6% on the AC images (p=0.002). The percentage of 99mTc-tetrofosmin defect segments within PET-viable segments, an estimate for the degree of underestimation of viability, decreased from 19.8%+/-15.2% on the NC images to 9.7%+/-12.6% on the AC images (p=0.01). Similar results were obtained when a 60% threshold was used to define viability by FDG PET. When the anterior-lateral and inferior-septal regions were separately analyzed, the effect of attenuation correction was significant only in the inferior-septal region. CONCLUSIONS: The results indicate that AC 99mTc-tetrofosmin SPECT improves the detection of viable myocardium mainly by decreasing the underestimation of viability particularly in the inferior-septal region, although some underestimation/overestimation of viability may still occur even with attenuation correction.[1]

References

  1. Attenuation-corrected 99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose. Matsunari, I., Böning, G., Ziegler, S.I., Nekolla, S.G., Stollfuss, J.C., Kosa, I., Ficaro, E.P., Schwaiger, M. J. Am. Coll. Cardiol. (1998) [Pubmed]
 
WikiGenes - Universities