The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Derepression of human embryonic zeta-globin promoter by a locus-control region sequence.

A multiple protein-DNA complex formed at a human alpha-globin locus-specific regulatory element, HS-40, confers appropriate developmental expression pattern on human embryonic zeta-globin promoter activity in humans and transgenic mice. We show here that introduction of a 1-bp mutation in an NF-E2/ AP1 sequence motif converts HS-40 into an erythroid-specific locus-control region. Cis-linkage with this locus-control region, in contrast to the wild-type HS-40, allows erythroid lineage-specific derepression of the silenced human zeta-globin promoter in fetal and adult transgenic mice. Furthermore, zeta-globin promoter activities in adult mice increase in proportion to the number of integrated DNA fragments even at 19 copies/genome. The mutant HS-40 in conjunction with human zeta-globin promoter thus can be used to direct position-independent and copy number-dependent expression of transgenes in adult erythroid cells. The data also supports a model in which competitive DNA binding of different members of the NF-E2/ AP1 transcription factor family modulates the developmental stage specificity of an erythroid enhancer. Feasibility to reswitch on embryonic/fetal globin genes through the manipulation of nuclear factor binding at a single regulatory DNA motif is discussed.[1]


  1. Derepression of human embryonic zeta-globin promoter by a locus-control region sequence. Huang, B.L., Fan-Chiang, I.R., Wen, S.C., Koo, H.C., Kao, W.Y., Gavva, N.R., Shen, C.K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
WikiGenes - Universities