The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Lithocholic acid side-chain cleavage to produce 17-keto or 22-aldehyde steroids by Pseudomonas putida strain ST-491 grown in the presence of an organic solvent, diphenyl ether.

We devised a method to screen for microorganisms capable of growing on bile acids in the presence of organic solvents and producing organic solvent-soluble derivatives. Pseudomonas putida biovar A strain ST-491 isolated in this study produced decarboxylated derivatives from the bile acids. Strain ST-491 grown on 0.5% lithocholic acid catabolized approximately 30% of the substrate as a carbon source, and transiently accumulated in the medium androsta-1,4-diene-3,17-dione in an amount of corresponding to 5% of the substrate added. When 20% (v/v) diphenyl ether was added to the medium, 60% of the substrate was converted to 17-keto steroids (androst-4-ene-3,17-dione-like steroid, androsta-1,4-diene-3,17-dione) or a 22-aldehyde steroid (pregna-1,4-dien-3-on-20-al). Amounts of the products were responsible for 45, 10, and 5% of the substrate, respectively. In the presence of the surfactant Triton X-100 instead of diphenyl ether, 40% of the substrate was converted exclusively to androsta-1,4-diene-3,17-dione.[1]


WikiGenes - Universities