The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of pho regulon genes in Bacillus subtilis.

PhoP-PhoR, one of three two-component systems known to be required to regulate the pho regulon in Bacillus subtilis, directly regulates the alkaline phosphatase genes that are used as pho reporters. Biochemical studies showed that B. subtilis PhoR, purified from Escherichia coli, was autophosphorylated in vitro in the presence of ATP. Phosphorylated PhoR showed stability under basic conditions but not acidic conditions, indicating that the phosphorylation probably occurs on a conserved histidine residue. Phospho-PhoR phosphorylated its cognate response regulator, PhoP in vitro. B. subtilis phoR was placed in the Bacillus chromosome under the control of the Pspac promoter, which is IPTG inducible. The wild-type phoR, under either native promoter or Pspac promoter with IPTG induction, resulted in a similar level of alkaline phosphatase production. Under high phosphate conditions, strains containing wild-type phoR, or phoR mutant gene products that lacked either the periplasmic domain, or both N-terminal transmembrane PhoR mutant gene products that lacked either the periplasmic domain, or both N-terminal transmembrane PhoR sequences or various extended N-terminal sequences, showed no significant APase production. Under phosphate starvation conditions, in the presence of IPTG, all strains containing mutated phoR genes showed alkaline phosphatase induction patterns similar to that of the wild-type strain, although the fully induced level was lower in the mutants. The decrease in total alkaline phosphatase production in these mutant strains can be compensated completely or partially by increasing the copy number of the mutant phoR gene. These in vivo results suggest that the C-terminal kinase domain of PhoR is sufficient for the induction of alkaline phosphatase expression under phosphate-limited conditions, and that the regulation for repression of APase under phosphate-replete conditions remains intact.[1]

References

 
WikiGenes - Universities