The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Neuron-specific splicing of zinc finger transcription factor REST/NRSF/XBR is frequent in neuroblastomas and conserved in human, mouse and rat.

Neuron-restrictive silencer factor (NRSF), also known as repressor element RE1 binding transcription factor (REST) or repressor binding to the X2 box (XBR) (REST/NRSF/XBR), is a zinc finger transcription factor that during early embryogenesis is required to repress a subset of neuron-specific genes in non-neural tissues and undifferentiated neural precursors. We have previously shown that splicing within the coding region of rat REST/NRSF/XBR (rREST) generates several different transcripts all of which are expressed in the adult nervous system. rREST transcripts with short neuron-specific exons (exon N) have in-frame stop codons and encode truncated proteins which have an N-terminal repressor domain and weakened DNA binding activity. The aim of this study was to analyze the regulatory mechanisms underlying REST/NRSF/XBR activity in human and mouse as compared to rat. We show that the structure of REST/NRSF/XBR gene and its regulation by neuron-specific splicing is conserved in human, mouse and rat. Expression levels of REST/NRSF/XBR transcripts with the insertion of exon N are increased during the neuronal differentiation of mouse teratocarcinoma PCC7 and rat pheocromocytoma PC12 cells and are high in several human and mouse neuroblastoma cells as compared to the relatively low levels in the developing and adult nervous system. The exclusive expression of the neuronal forms of REST/NRSF/XBR mRNAs in mouse neuroblastoma Neuro-2A cells is not caused by rearrangement of the REST/NRSF/XBR gene nor by mutations in the sequence of the splice sites flanking exon N. These data suggest that changes in REST/NRSF/XBR splicing pattern may result from altered levels of splicing factors reflecting the formation and/or progression of neuroblastoma tumors.[1]

References

 
WikiGenes - Universities