The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Two independent amsacrine-resistant human myeloid leukemia cell lines share an identical point mutation in the 170 kDa form of human topoisomerase II.

Cloning and sequencing of cDNA segments of human TOP2 gene encoding the 170 kDa form of human DNA topoisomerase II show that Arg486 of the enzyme has been mutated to a lysine in the enzyme from two human leukemia cell lines HL-60/AMSA and KBM-3/AMSA, which were independently selected for resistance to the antitumor drug amsacrine (4'-[9-acridinylamino]-methanesulfon-m-anisidide, mAMSA). Sequence identity comparisons between eukaryotic DNA topoisomerase II and bacterial gyrase (bacterial DNA topoisomerase II) indicate that the position of the common mutation observed in mAMSA-resistant human TOP2 corresponds to that of the point mutation nal-31 in the Escherichia coli gyrase B gene, which confers resistance to nalidixic acid. Because mAMSA and nalidixic acid are known to act on their respective targets by a common mechanism of trapping the covalent enzyme-DNA intermediates, these results provide strong evidence that the 170 kDa form of human DNA topoisomerase II is a major cellular target of mAMSA, and that Arg486 of this enzyme is involved in mAMSA-mediated trapping of the covalent enzyme-DNA complex.[1]

References

 
WikiGenes - Universities