The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Role of nucleolin in posttranscriptional control of MMP-9 expression.

Matrix-metalloproteinases (MMPs), which are able to degrade extra cellular matrix (ECM) components, are crucial in ECM-remodeling, under physiological (e.g., embryogenesis, wound healing, angiogenesis) or pathophysiological conditions (e.g., arthritis, cancer progression and metastasis, fibrosis). Treating HT1080 cells, a human fibrosarcoma cell line, with the iron chelator 2,2-Dipyridyl, which mimics certain aspects of hypoxia, leads to a 3-fold elevated Matrix-metalloproteinase-9 (MMP-9) protein level. This elevation occurs within 3 h, without any change of mRNA-concentration. The rapid increase in MMP-9 expression is caused by an enhancement of translational efficiency characterized by a recruitment of translationally inactive MMP-9 mRNP-complexes into the rough endoplasmatic reticulum (rER). Reporter gene assays, which depend on the untranslated regions (UTR) of MMP-9 mRNA, reveal that the posttranscriptional regulation is mainly attributed to the 3'UTR. RNA/protein interaction studies indicate that the elevated binding of nucleolin ( approximately 64 kDa form) to the 3'UTR may be of major importance for the increased efficiency of MMP-9 translation. The results show that MMP-9 expression can be regulated posttranscriptionally, affecting the efficiency of translation and localization of the mRNA.[1]

References

  1. Role of nucleolin in posttranscriptional control of MMP-9 expression. Fähling, M., Steege, A., Perlewitz, A., Nafz, B., Mrowka, R., Persson, P.B., Thiele, B.J. Biochim. Biophys. Acta (2005) [Pubmed]
 
WikiGenes - Universities