The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The human estrogen receptor has two independent nonacidic transcriptional activation functions.

We have previously reported the presence of a hormone-inducible transcriptional activation function (TAF-2) within the region of the estrogen receptor (ER) that contains the hormone binding domain. We show here that the N-terminal A/B region of the ER contains an independent constitutive activation function (TAF-1) that exhibits cell type specificity since it activates transcription efficiently in chicken embryo fibroblasts, but only poorly in HeLa cells. By analyzing the ability of TAF-1, TAF-2, and the GAL4 and VP16 acidic activating domains (AADs) to homosynergize and heterosynergize with one another and with the factor binding to the upstream element (UE) of the adenovirus 2 major late promoter, we show that the activation properties of TAF-1 and TAF-2 are different and distinct from those of AADs, in agreement with the absence of acidic amino acid stretches in TAF-1 and TAF-2.[1]

References

  1. The human estrogen receptor has two independent nonacidic transcriptional activation functions. Tora, L., White, J., Brou, C., Tasset, D., Webster, N., Scheer, E., Chambon, P. Cell (1989) [Pubmed]
 
WikiGenes - Universities