The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms.

Exogenous administration of glucagon-like peptide-1-(7-36) amide (GLP-1), an insulinotropic hormone, inhibits gastric emptying and acid secretion in humans. The role of GLP-1 as a regulator of gastric function is elusive. In gastric fistula rats, vagal afferent denervation and peripheral administration of the GLP-1 receptor antagonist exendin-(9-39) amide enhanced emptying of a glucose meal, whereas intracerebroventricular exendin was ineffective. The rate of saline emptying was attenuated by peripheral as well as by central administration of GLP-1, and pretreatment with exendin by the respective routes reversed the inhibition by GLP-1. Vagal afferent denervation abolished the central and peripheral action of GLP-1 on gastric emptying. Neither peripheral cholinergic nor adrenergic blockade altered the delay of methyl cellulose meal emptying by intracisternal GLP-1 injection. Acid secretion in conscious pylorus-ligated rats was inhibited by intracisternal GLP-1 administration, whereas systemic GLP-1 was ineffective. These results support the notion that GLP-1 receptors participate in the central and peripheral regulation of gastric function. Furthermore, vagal afferent nerves mediate the inhibitory action of GLP-1 on gastric motor function. GLP-1 may be a candidate brain-gut peptide that acts as a physiological modulator of gastric function.[1]

References

  1. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Imeryüz, N., Yeğen, B.C., Bozkurt, A., Coşkun, T., Villanueva-Peñacarrillo, M.L., Ulusoy, N.B. Am. J. Physiol. (1997) [Pubmed]
 
WikiGenes - Universities