The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Angiotensin II-induced growth of vascular smooth muscle cells requires an Src-dependent activation of the epidermal growth factor receptor.

BACKGROUND: Angiotensin II (Ang II) is a potent stimulus of vascular smooth muscle cell (VSMC) growth. Activation of extracellular signal-regulated kinase (ERK), the archetypal mitogen-activated protein (MAP) kinase, and phosphatidylinositol 3 (PI3) kinase are critical steps in Ang II-induced mitogenic signaling. However, the mechanism involved in the activation of these kinases upon binding of Ang II to its receptor is poorly understood. METHODS: In the present study, we examined the role of the epidermal growth factor receptor (EGFR) in Ang II signaling in VSMCs employing immunoprecipitation, Western blot analysis, kinase immunocomplex assay, and [3H]-thymidine incorporation. RESULTS: A time-dependent tyrosine phosphorylation of the EGFR in response to Ang II was observed that was mediated by the Ang II type 1 receptor. This transactivation of the EGFR was blocked in the presence of PP1, an inhibitor of the intracellular Src-like tyrosine kinases. The tyrphostin AG 1478, a selective EGFR antagonist, inhibited both Ang II- and EGF- induced tyrosine phosphorylation of the EGFR. Furthermore, Ang II induced the binding of the adaptor protein Shc to the EGFR, leading to phosphorylation of Shc. In addition, the same nanomolar concentrations of AG 1478 that were effective in EGF signaling blocked the Ang II- induced activation of ERK and PI3 kinase in a dose-dependent manner. Proliferation of VSMCs, detected by measurements of DNA synthesis, following stimulation with Ang II was potently inhibited in the presence of AG 1478 or PP1. CONCLUSION: Our data suggest that EGFR serves as a role in mitogenic signaling following stimulation with Ang I through a ligand-independent and Src-dependent transactivation of the EGFR. Furthermore, we demonstrate this transactivation as a pivotal step in Ang II-induced activation of MAP kinase and PI3 kinase, as well as growth of VSMCs.[1]

References

 
WikiGenes - Universities