The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli.

Approximately 30-40% of malignant glial tumors exhibit mutations in the tumor suppressor gene, PTEN/MMAC. Additionally, these tumors are associated with (a) mutations in epidermal growth factor receptor (EGFR), leading to a pro-oncogenic constitutive activation, as well as amplification of its gene, and/or (b) mutations in p53, disrupting normal cellular homeostatic processes. Whereas PTEN/MMAC has been shown to possess antiangiogenic action, constitutively active EGFR or p53 gene defects have been associated with proangiogenic action. In this article, we asked if PTEN/MMAC gene transfer into human glioma cells that possess inactivating mutations of the PTEN/MMAC gene but also express either constitutively active EGFR (U87DeltaEGFR cells) or possess an inactivating mutation of p53 (U251 cells) still display inhibited angiogenesis in orthotopic and ectopic models of gliomas. Human glioma xenografts treated with PTEN/MMAC gene transfer exhibited significantly decreased vascularity both in an orthotopic and in an ectopic model. Taken in combination, these results provide strong evidence of PTEN/MMAC's role in regulating glioma angiogenesis even in the presence of strong proangiogenic signals provided by constitutive EGFR activation or p53 inactivation.[1]

References

  1. PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Abe, T., Terada, K., Wakimoto, H., Inoue, R., Tyminski, E., Bookstein, R., Basilion, J.P., Chiocca, E.A. Cancer Res. (2003) [Pubmed]
 
WikiGenes - Universities