The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Beta1,4-N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells.

A rat pheochromocytoma cell line (PC12), when transfected with beta1,4-N-acetylglucosaminyltransferase III (GnT-III), which catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulted in the suppression of neurite outgrowth induced by costimulation of epidermal growth factor (EGF) and integrins. The neurite outgrowth was restored by the overexpression of a constitutively activated mitogen- or extracellular signal-regulated kinase kinase-1 (MEK-1). Consistent with this, the EGF receptor (EGFR)-mediated ERK activation was blocked in GnT-III transfectants. Conversely, the overexpression of dominant negative MEK-1 or treatment with PD98059, a specific inhibitor of MEK-1, inhibited neurite outgrowth in controls transfected with mock. Furthermore GnT-III activity is required for these inhibitions, because the overexpression of a dominant negative GnT-III mutant (D321A) failed to reduce neurite outgrowth and EGFR-mediated ERK activation. Lectin blot analysis confirmed that EGFR from wild-type GnT-III transfectants had been modified by bisecting GlcNAc in its N-glycan structures. This modification led to a significant decrease in EGF binding and EGFR autophosphorylation. Collectively, the results constitute a comprehensive body of evidence to show clearly that the overexpression of GnT-III prevents neurite outgrowth induced by costimulation of EGF and integrins through the Ras/MAPK activation pathway and indicates that GnT-III may be an important regulator for cell differentiation in neural tissues.[1]

References

  1. Beta1,4-N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells. Gu, J., Zhao, Y., Isaji, T., Shibukawa, Y., Ihara, H., Takahashi, M., Ikeda, Y., Miyoshi, E., Honke, K., Taniguchi, N. Glycobiology (2004) [Pubmed]
 
WikiGenes - Universities