The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Probabilistic neural network multiple classifier system for predicting the genotoxicity of quinolone and quinoline derivatives.

Quinolone and quinoline are known to be liver carcinogens in rodents, and a number of their derivatives have been shown to exhibit mutagenicity in the Ames test, using Salmonella typhimurium strain TA 100 in the presence of S9. Both the carcinogenicity and the mutagenicity of quinolone and quinoline derivatives, as determined by SAS, can be attributed to their genotoxicity potential. This potential, which is measured by genotoxicity tests, is a good indication of carcinogenicity and mutagenicity because compounds that are positive in these tests have the potential to be human carcinogens and/or mutagens. In this study, a collection of quinolone and quinoline derivatives' carcinogenicity is determined by qualitatively predicting their genotoxicity potential with predictive PNN (probabilistic neural network) classification models. In addition, a multiple classifier system is also developed to improve the predictability of genotoxicity. Superior results are seen with the multiple classifier system over the individual PNN classification models. With the multiple classifier system, 89.4% of the quinolone derivatives were predicted correctly, and higher predictability is seen with the quinoline derivatives at 92.2% correct. The multiple classifier system not only is able to accurately predict the genotoxicity but also provides an insight about the main determinants of genotoxicity of the quinolone and quinoline derivatives. Thus, the PNN multiple classifier system generated in this study is a beneficial contributor toward predictive toxicology in the design of less carcinogenic bioactive compounds.[1]

References

  1. Probabilistic neural network multiple classifier system for predicting the genotoxicity of quinolone and quinoline derivatives. He, L., Jurs, P.C., Kreatsoulas, C., Custer, L.L., Durham, S.K., Pearl, G.M. Chem. Res. Toxicol. (2005) [Pubmed]
 
WikiGenes - Universities