The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Differential expression of myc family genes during murine development.

The myc family of cellular oncogenes contains three known members. The N-myc and c-myc genes have 5'-noncoding exons, strikingly homologous coding regions, and display similar oncogenic potential in an in vitro transformation assay. The L-myc gene is less well characterized, but shows homology to N-myc and c-myc (ref. 6; also see below). c-myc is expressed in most dividing cells, and deregulated expression of this gene has been implicated in the development of many classes of tumours. In contrast, expression of N-myc has been found only in a restricted set of tumours, most of which show neural characteristics; these include human neuroblastoma, retinoblastoma and small cell lung carcinoma (SCLC). L-myc expression has so far been found only in SCLC. Activated N-myc and L-myc expression has been implicated in oncogenesis; for example, although N-myc expression has been found in all neuroblastomas tested, activated (greatly increased) N-myc expression, resulting from gene amplification, is correlated with progression of the tumour. We now report that high-level expression of N- and L-myc is very restricted with respect to tissue and stage in the developing mouse, while that of c-myc is more generalized. Furthermore, we demonstrate that N-myc is not simply a neuroectoderm-specific gene; both N- and L-myc seem to be involved in the early stages of multiple differentiation pathways. Our findings suggest that differential myc gene expression has a role in mammalian development and that the normal expression patterns of these genes generally predict the types of tumours in which they are expressed or activated.[1]

References

  1. Differential expression of myc family genes during murine development. Zimmerman, K.A., Yancopoulos, G.D., Collum, R.G., Smith, R.K., Kohl, N.E., Denis, K.A., Nau, M.M., Witte, O.N., Toran-Allerand, D., Gee, C.E. Nature (1986) [Pubmed]
 
WikiGenes - Universities