The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus.

Isoprenoid biosynthesis was investigated in the green alga Scenedesmus obliquus grown heterotrophically on 13C-labelled glucose and acetate. Several isoprenoid compounds were isolated and investigated by 13C-NMR spectroscopy. According to the 13C-labelling pattern indicated by the 13C-NMR spectra, the biosynthesis of all plastidic isoprenoids investigated (prenyl side-chains of chlorophylls and plastoquinone-9, and the carotenoids beta-carotene and lutein), as well as of the non-plastidic cytoplasmic sterols, does not proceed via the classical acetate/mevalonate pathway (which leads from acetyl-CoA via mevalonate to isopentenyl diphosphate), but via the novel glyceraldehyde 3-phosphate/pyruvate route recently detected in eubacteria. Formation of isopentenyl diphosphate involves the condensation of a C2 unit derived from pyruvate decarboxylation with glyceraldehyde 3-phosphate and a transposition yielding the branched C5 skeleton of isoprenic units.[1]

References

 
WikiGenes - Universities