The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Regulation of mammalian pyruvate dehydrogenase alpha subunit gene expression by glucose in HepG2 cells.

We report the effect of glucose on the expression of the gene encoding the pyruvate dehydrogenase (E1) alpha subunit (E1alpha) in human hepatoma (HepG2) cells. Total pyruvate dehydrogenase complex activity as well as the levels of protein and mRNA of the E1alpha subunit were significantly increased in HepG2 cells cultured in medium containing 16.7 mM glucose compared with 1.0 mM glucose for a period of 4 weeks. The level of E1alpha mRNA was elevated approx. 2-fold in HepG2 cells cultured for 24 h in medium containing 16.7 mM glucose compared with 1 mM glucose. This effect was specific to glucose and independent of insulin. Nuclear run-on assays and promoter analysis indicate that the glucose-induced increases in the levels of E1alpha mRNA in HepG2 cells are due to increased transcription of the human E1alpha (PDHA1) gene. Mutational analysis of the E1alpha promoter region has identified two regions, from -78 to -73 bp (CCCCTG) and from -8 to -3 bp (GCGGTG), that are responsible for the effect of glucose on promoter activity; the former exhibits a larger effect. These two sequences represent new variations of the carbohydrate-response element that has been identified in other genes. The stimulation of E1alpha promoter activity by glucose was abolished by okadaic acid at 100 nM but not at 5 nM, suggesting that glucose-mediated regulation of pyruvate dehydrogenase complex E1alpha gene transcription involves a phosphorylation/dephosphorylation mechanism, possibly involving protein phosphatase-1.[1]

References

 
WikiGenes - Universities