The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

S. Moein Moghimi

The Molecular Targeting and Polymer Toxicology Group

School of Pharmacy and Biomolecular Sciences

Cockcroft Building

University of Brighton

UK

[email]@brighton.ac.uk

Name/email consistency: high

 
 
 
 
 
 
 

Affiliations

  • The Molecular Targeting and Polymer Toxicology Group, School of Pharmacy and Biomolecular Sciences, Cockcroft Building, University of Brighton, UK. 2000 - 2008
  • University of Brighton, Molecular Targeting and Polymer Toxicology Group, School of Pharmacy, Brighton, UK. 2007
  • Department of Biochemistry, Charing Cross Hospital, Fulham Palace Road, W6 8RF, UK. 2002
  • School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK. 2000
  • Department of Pharmaceutical Sciences, University of Nottingham, UK. 1999

References

  1. Enhanced lymph node retention of subcutaneously injected IgG1-PEG2000-liposomes through pentameric IgM antibody-mediated vesicular aggregation. Moghimi, S.M., Moghimi, M. Biochim. Biophys. Acta (2008) [Pubmed]
  2. Particulate nanomedicine in the footsteps of platelet homing. Moghimi, S.M., Hamad, I., Hunter, A.C. Nanomedicine. (Lond) (2007) [Pubmed]
  3. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes. Moghimi, S.M. Biomaterials (2006) [Pubmed]
  4. Activation of the human complement system by cholesterol-rich and PEGylated liposomes-modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels. Moein Moghimi, S., Hamad, I., Bünger, R., Andresen, T.L., Jørgensen, K., Hunter, A.C., Baranji, L., Rosivall, L., Szebeni, J. J. Liposome. Res (2006) [Pubmed]
  5. Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. Moghimi, S.M., Hamad, I., Andresen, T.L., Jørgensen, K., Szebeni, J. FASEB J. (2006) [Pubmed]
  6. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Moghimi, S.M. Anti-cancer. Agents. Medicinal. Chemistry (2006) [Pubmed]
  7. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Moghimi, S.M., Symonds, P., Murray, J.C., Hunter, A.C., Debska, G., Szewczyk, A. Mol. Ther. (2005) [Pubmed]
  8. Causative factors behind poloxamer 188 (Pluronic F68, Flocor)-induced complement activation in human sera. A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Moghimi, S.M., Hunter, A.C., Dadswell, C.M., Savay, S., Alving, C.R., Szebeni, J. Biochim. Biophys. Acta (2004) [Pubmed]
  9. Modulation of lymphatic distribution of subcutaneously injected poloxamer 407-coated nanospheres: the effect of the ethylene oxide chain configuration. Moghimi, S.M. FEBS Lett. (2003) [Pubmed]
  10. Real-time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage-prone nanoparticles to stealth entities by poloxamine 908. Moghimi, S.M., Pavey, K.D., Hunter, A.C. FEBS Lett. (2003) [Pubmed]
  11. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Moghimi, S.M., Szebeni, J. Prog. Lipid Res. (2003) [Pubmed]
  12. Modulation of murine liver macrophage clearance of liposomes by diethylstilbestrol. The effect of vesicle surface charge and a role for the complement receptor Mac-1 (CD11b/CD18) of newly recruited macrophages in liposome recognition. Moghimi, S.M., Patel, H.M. J. Control. Release (2002) [Pubmed]
  13. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Moghimi, S.M. Biochim. Biophys. Acta (2002) [Pubmed]
  14. Liposome recognition by resident and newly recruited murine liver macrophages. Moghimi, S.M. J. Liposome. Res (2002) [Pubmed]
  15. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Moghimi, S.M., Hunter, A.C. Pharm. Res. (2001) [Pubmed]
  16. Long-circulating and target-specific nanoparticles: theory to practice. Moghimi, S.M., Hunter, A.C., Murray, J.C. Pharmacol. Rev. (2001) [Pubmed]
  17. Recent advances in cellular, sub-cellular and molecular targeting. Moghimi, S.M., Rajabi-Siahboomi, A.R. Adv. Drug Deliv. Rev. (2000) [Pubmed]
  18. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Moghimi, S.M., Hunter, A.C. Trends Biotechnol. (2000) [Pubmed]
  19. Re-establishing the long circulatory behaviour of poloxamine-coated particles after repeated intravenous administration: applications in cancer drug delivery and imaging. Moghimi, S.M. Biochim. Biophys. Acta (1999) [Pubmed]
 
WikiGenes - Universities