The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

David F. V. Lewis

Faculty of Health and Medical Sciences

University of Surrey

Guildford

Surrey

UK

[email]@surrey.ac.uk

Name/email consistency: high

 
 
 
 
 
 
 

Affiliations

  • Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. 1998 - 2010
  • University of Surrey, School of Biomedical and Molecular Sciences, Guildford, Surrey, UK. 2005 - 2008
  • Molecular Toxicology Group, Centre for Toxicology, School of Biological Sciences, University of Surrey, UK. 1998 - 2003

References

  1. Quantitative structure-activity relationships (QSARs) for inhibitors and substrates of CYP2B enzymes: importance of compound lipophilicity in explanation of potency differences. Lewis, D.F., Ito, Y., Lake, B.G. J. Enzyme. Inhib. Med. Chem (2010) [Pubmed]
  2. An evaluation of ondansetron binding interactions with human cytochrome P450 enzymes CYP3A4 and CYP2D6. Lewis, D.F., Ito, Y., Eddershaw, P.J., Dickins, M., Goldfarb, P.S. Drug. Metab. Lett (2010) [Pubmed]
  3. Electronic and structural aspects of p450-mediated drug metabolism. Lewis, D.F., Ito, Y., Lake, B.G. Drug. Metab. Lett (2009) [Pubmed]
  4. Molecular modelling of CYP2F substrates: comparison of naphthalene metabolism by human, rat and mouse CYP2F subfamily enzymes. Lewis, D.F., Ito, Y., Lake, B.G. Drug. Metabol. Drug. Interact (2009) [Pubmed]
  5. Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity. Lewis, D.F., Ito, Y. Xenobiotica (2009) [Pubmed]
  6. Human cytochromes P450 in the metabolism of drugs: new molecular models of enzyme-substrate interactions. Lewis, D.F., Ito, Y. Expert. Opin. Drug. Metab. Toxicol (2008) [Pubmed]
  7. Quantitative structure-activity relationships (QSARs) in inhibitors of various cytochromes P450: the importance of compound lipophilicity. Lewis, D.F., Lake, B.G., Dickins, M. J. Enzyme. Inhib. Med. Chem (2007) [Pubmed]
  8. Metabolism of coumarin by human P450s: a molecular modelling study. Lewis, D.F., Ito, Y., Lake, B.G. Toxicol. In. Vitro (2006) [Pubmed]
  9. Quantitative structure-activity relationships (QSars) in CYP3A4 inhibitors: the importance of lipophilic character and hydrogen bonding. Lewis, D.F., Lake, B.G., Dickins, M. J. Enzyme. Inhib. Med. Chem (2006) [Pubmed]
  10. The astronomical pulse of global extinction events. Lewis, D.F., Dorne, J.L. ScientificWorldJournal (2006) [Pubmed]
  11. Quantitative structure-activity relationships (QSARs) within cytochromes P450 2B (CYP2B) subfamily enzymes: the importance of lipophilicity for binding and metabolism. Lewis, D.F., Lake, B.G., Ito, Y., Anzenbacher, P. Drug. Metabol. Drug. Interact (2006) [Pubmed]
  12. Investigating human P450s involved in drug metabolism via homology with high-resolution P450 crystal structures of the CYP2C subfamily. Lewis, D.F., Ito, Y., Goldfarb, P.S. Curr. Drug Metab. (2006) [Pubmed]
  13. Structural modelling of the human drug-metabolizing cytochromes P450. Lewis, D.F., Ito, Y., Goldfarb, P.S. Curr. Med. Chem. (2006) [Pubmed]
  14. Lipophilicity relationships in inhibitors of CYP2C9 and CYP2C19 enzymes. Lewis, D.F., Lake, B.G., Ito, Y., Dickins, M. J. Enzyme. Inhib. Med. Chem (2006) [Pubmed]
  15. Molecular modelling of human microsomal epoxide hydrolase (EH) by homology with a fungal (Aspergillus niger) EH crystal structure of 1.8 A resolution: structure-activity relationships in epoxides inhibiting EH activity. Lewis, D.F., Lake, B.G., Bird, M.G. Toxicol. In. Vitro (2005) [Pubmed]
  16. Human P450s in the metabolism of drugs: molecular modelling of enzyme-substrate interactions. Lewis, D.F. Expert. Opin. Drug. Metab. Toxicol (2005) [Pubmed]
  17. Quantitative structure-activity relationships (QSARs) for substrates of human cytochromes P450 CYP2 family enzymes. Lewis, D.F. Toxicol. In. Vitro (2004) [Pubmed]
  18. 57 varieties: the human cytochromes P450. Lewis, D.F. Pharmacogenomics (2004) [Pubmed]
  19. Compound lipophilicity for substrate binding to human P450s in drug metabolism. Lewis, D.F., Jacobs, M.N., Dickins, M. Drug Discov. Today (2004) [Pubmed]
  20. Quantitative structure-activity relationships within a homologous series of 7-alkoxyresorufins exhibiting activity towards CYP1A and CYP2B enzymes: molecular modelling studies on key members of the resorufin series with CYP2C5-derived models of human CYP1A1, CYP1A2, CYP2B6 and CYP3A4. Lewis, D.F., Lake, B.G., Dickins, M. Xenobiotica (2004) [Pubmed]
  21. Homology modelling of CYP3A4 from the CYP2C5 crystallographic template: analysis of typical CYP3A4 substrate interactions. Lewis, D.F., Lake, B.G., Dickins, M., Goldfarb, P.S. Xenobiotica (2004) [Pubmed]
  22. Substrates of human cytochromes P450 from families CYP1 and CYP2: analysis of enzyme selectivity and metabolism. Lewis, D.F., Lake, B.G., Dickins, M. Drug. Metabol. Drug. Interact (2004) [Pubmed]
  23. Hydrogen bonding in human p450-substrate interactions: a major contribution to binding affinity. Lewis, D.F. ScientificWorldJournal (2004) [Pubmed]
  24. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Lewis, D.F. Arch. Biochem. Biophys. (2003) [Pubmed]
  25. Homology modelling of human CYP2E1 based on the CYP2C5 crystal structure: investigation of enzyme-substrate and enzyme-inhibitor interactions. Lewis, D.F., Lake, B.G., Bird, M.G., Loizou, G.D., Dickins, M., Goldfarb, P.S. Toxicol. In. Vitro (2003) [Pubmed]
  26. A quantitative structure-activity relationship (QSAR) study of mutagenicity in several series of organic chemicals likely to be activated by cytochrome P450 enzymes. Lewis, D.F., Ioannides, C., Parke, D.V. Teratog., Carcinog. Mutagen. (2003) [Pubmed]
  27. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism. Lewis, D.F., Dickins, M. Drug Metab. Rev. (2003) [Pubmed]
  28. Homology modelling of human CYP1A2 based on the CYP2C5 crystallographic template structure. Lewis, D.F., Lake, B.G., Dickins, M., Ueng, Y.F., Goldfarb, P.S. Xenobiotica (2003) [Pubmed]
  29. Homology modelling of CYP2A6 based on the CYP2C5 crystallographic template: enzyme-substrate interactions and QSARs for binding affinity and inhibition. Lewis, D.F., Lake, B.G., Dickins, M., Goldfarb, P.S. Toxicol. In. Vitro (2003) [Pubmed]
  30. Molecular modelling of human CYP1B1 substrate interactions and investigation of allelic variant effects on metabolism. Lewis, D.F., Gillam, E.M., Everett, S.A., Shimada, T. Chem. Biol. Interact. (2003) [Pubmed]
  31. P450 structures and oxidative metabolism of xenobiotics. Lewis, D.F. Pharmacogenomics (2003) [Pubmed]
  32. Structural models for cytochrome P450-mediated catalysis. Lewis, D.F. ScientificWorldJournal (2003) [Pubmed]
  33. Human cytochromes P450 associated with the phase 1 metabolism of drugs and other xenobiotics: a compilation of substrates and inhibitors of the CYP1, CYP2 and CYP3 families. Lewis, D.F. Curr. Med. Chem. (2003) [Pubmed]
  34. On the estimation of binding affinity (deltaGbind) for human P450 substrates (based on Km and KD values). Lewis, D.F. Curr. Drug Metab. (2003) [Pubmed]
  35. A molecular model of CYP2D6 constructed by homology with the CYP2C5 crystallographic template: investigation of enzyme-substrate interactions. Lewis, D.F., Dickins, M., Lake, B.G., Goldfarb, P.S. Drug. Metabol. Drug. Interact (2003) [Pubmed]
  36. Investigation of enzyme selectivity in the human CYP2C subfamily: homology modelling of CYP2C8, CYP2C9 and CYP2C19 from the CYP2C5 crystallographic template. Lewis, D.F., Dickins, M., Lake, B.G., Goldfarb, P.S. Drug. Metabol. Drug. Interact (2003) [Pubmed]
  37. Quantitative structure-activity relationships (QSARs) within the cytochrome P450 system: QSARs describing substrate binding, inhibition and induction of P450s. Lewis, D.F. Inflammopharmacology (2003) [Pubmed]
  38. Factors influencing rates and clearance in P450-mediated reactions: QSARs for substrates of the xenobiotic-metabolizing hepatic microsomal P450s. Lewis, D.F., Dickins, M. Toxicology (2002) [Pubmed]
  39. Modelling human cytochrome P450-substrate interactions. Lewis, D.F. Ernst Schering Res. Found. Workshop (2002) [Pubmed]
  40. Molecular modeling of human cytochrome P450-substrate interactions. Lewis, D.F. Drug Metab. Rev. (2002) [Pubmed]
  41. Structure-activity relationship for human cytochrome P450 substrates and inhibitors. Lewis, D.F., Modi, S., Dickins, M. Drug Metab. Rev. (2002) [Pubmed]
  42. Molecular modelling of the peroxisome proliferator-activated receptor alpha (PPAR alpha) from human, rat and mouse, based on homology with the human PPAR gamma crystal structure. Lewis, D.F., Jacobs, M.N., Dickins, M., Lake, B.G. Toxicol. In. Vitro (2002) [Pubmed]
  43. Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Lewis, D.F. Xenobiotica (2002) [Pubmed]
  44. Quantitative structure--activity relationships for inducers of cytochromes P450 and nuclear receptor ligands involved in P450 regulation within the CYP1, CYP2, CYP3 and CYP4 families. Lewis, D.F., Jacobs, M.N., Dickins, M., Lake, B.G. Toxicology (2002) [Pubmed]
  45. Human carcinogens: an evaluation study via the COMPACT and HazardExpert procedures. Lewi, D.F., Bird, M.G., Jacobs, M.N. Hum. Exp. Toxicol (2002) [Pubmed]
  46. Species differences in coumarin metabolism: a molecular modelling evaluation of CYP2A interactions. Lewis, D.F., Lake, B.G. Xenobiotica (2002) [Pubmed]
  47. Molecular orbital calculations and nicotine metabolism: a rationale for experimentally observed metabolite ratios. Lewis, D.F., Gorrod, J.W. Drug. Metabol. Drug. Interact (2002) [Pubmed]
  48. Modelling human cytochromes P450 involved in drug metabolism from the CYP2C5 crystallographic template. Lewis, D.F. J. Inorg. Biochem. (2002) [Pubmed]
  49. Substrate SARs in human P450s. Lewis, D.F., Dickins, M. Drug Discov. Today (2002) [Pubmed]
  50. Molecular modelling of the mouse cytochrome P450 CYP2F2 based on the CYP102 crystal structure template and selective CYP2F2 substrate interactions. Lewis, D.F., Bailey, P.T., Low, L.K. Drug. Metabol. Drug. Interact (2002) [Pubmed]
  51. Molecular modelling of CYP2B6 based on homology with the CYP2C5 crystal structure: analysis of enzyme-substrate interactions. Lewis, D.F., Lake, B.G., Dickins, M., Goldfarb, P.S. Drug. Metabol. Drug. Interact (2002) [Pubmed]
  52. Molecular binding interactions: their estimation and rationalization in QSARs in terms of theoretically derived parameters. Lewis, D.F., Broughton, H.B. ScientificWorldJournal (2002) [Pubmed]
  53. Quantitative structure-activity relationships (QSARs) within substrates of human cytochromes P450 involved in drug metabolism. Lewis, D.F., Modi, S., Dickins, M. Drug. Metabol. Drug. Interact (2001) [Pubmed]
  54. Quantitative structure-activity relationships (QSARs) within series of inhibitors for mammalian cytochromes P450 (CYPs). Lewis, D.F., Dickins, M. J. Enzym. Inhib. (2001) [Pubmed]
  55. Cytochromes P450, oxygen, and evolution. Lewis, D.F., Sheridan, G. ScientificWorldJournal (2001) [Pubmed]
  56. Molecular modelling of human CYP2E1 by homology with the CYP102 haemoprotein domain: investigation of the interactions of substrates and inhibitors within the putative active site of the human CYP2E1 isoform. Lewis, D.F., Bird, M.G., Dickins, M., Lake, B.G., Eddershaw, P.J., Tarbit, M.H., Goldfarb, P.S. Xenobiotica (2000) [Pubmed]
  57. Structural characteristics of human P450s involved in drug metabolism: QSARs and lipophilicity profiles. Lewis, D.F. Toxicology (2000) [Pubmed]
  58. On the recognition of mammalian microsomal cytochrome P450 substrates and their characteristics: towards the prediction of human p450 substrate specificity and metabolism. Lewis, D.F. Biochem. Pharmacol. (2000) [Pubmed]
  59. Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Lewis, D.F., Hlavica, P. Biochim. Biophys. Acta (2000) [Pubmed]
  60. Modelling human cytochromes P450 for evaluating drug metabolism: an update. Lewis, D.F. Drug. Metabol. Drug. Interact (2000) [Pubmed]
  61. Molecular modelling of CYP2B6, the human CYP2B isoform, by homology with the substrate-bound CYP102 crystal structure: evaluation of CYP2B6 substrate characteristics, the cytochrome b5 binding site and comparisons with CYP2B1 and CYP2B4. Lewis, D.F., Lake, B.G., Dickins, M., Eddershaw, P.J., Tarbit, M.H., Goldfarb, P.S. Xenobiotica (1999) [Pubmed]
  62. Molecular modelling of lanosterol 14 alpha-demethylase (CYP51) from Saccharomyces cerevisiae via homology with CYP102, a unique bacterial cytochrome P450 isoform: quantitative structure-activity relationships (QSARs) within two related series of antifungal azole derivatives. Lewis, D.F., Wiseman, A., Tarbit, M.H. J. Enzym. Inhib. (1999) [Pubmed]
  63. Homology modelling of human cytochromes P450 involved in xenobiotic metabolism and rationalization of substrate selectivity. Lewis, D.F. Exp. Toxicol. Pathol. (1999) [Pubmed]
  64. Molecular modelling of CYP4A subfamily members based on sequence homology with CYP102. Lewis, D.F., Lake, B.G. Xenobiotica (1999) [Pubmed]
  65. Molecular modelling of CYP1 family enzymes CYP1A1, CYP1A2, CYP1A6 and CYP1B1 based on sequence homology with CYP102. Lewis, D.F., Lake, B.G., George, S.G., Dickins, M., Eddershaw, P.J., Tarbit, M.H., Beresford, A.P., Goldfarb, P.S., Guengerich, F.P. Toxicology (1999) [Pubmed]
  66. Molecular modelling of steroidogenic cytochromes P450 from families CYP11, CYP17, CYP19 and CYP21 based on the CYP102 crystal structure. Lewis, D.F., Lee-Robichaud, P. J. Steroid Biochem. Mol. Biol. (1998) [Pubmed]
  67. Structural determinants of cytochrome P450 substrate specificity, binding affinity and catalytic rate. Lewis, D.F., Eddershaw, P.J., Dickins, M., Tarbit, M.H., Goldfarb, P.S. Chem. Biol. Interact. (1998) [Pubmed]
 
WikiGenes - Universities