The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mechanism of inhibition of the class A beta -lactamases PC1 and TEM-1 by tazobactam. Observation of reaction products by electrospray ionization mass spectrometry.

The reactions of class A beta-lactamases PC1 and TEM-1 with tazobactam (TZB), a potent penicillanic sulfone inhibitor for class A beta-lactamases, were studied using electrospray ionization mass spectrometry ( ESI/MS). Following inactivation of the beta-lactamases by TZB, new abundant high mass components were observed including three with molecular masses of 52, 70, and 88 Da greater than PC1 and TEM-1, respectively, and a component with a molecular mass of 300 Da greater than PC1. In addition, three TZB reaction products with molecular masses of 248, 264, and 280 Da were observed. High performance liquid chromatography (HPLC)/ESI/MS analysis of the TZB-PC1 adduct digested with Glu-C revealed three new components with masses 52, 70, and 88 Da greater than that of the peptide composed of amino acid residues 58-82 and one new component with a mass 70 Da greater than that of the peptide composed of amino acid residues 125-141. HPLC/ ESI/MS/MS analysis of the two digested peptides whose masses increased by 70 Da indicated that Ser-70 and Ser-130 were the most likely TZB-modified amino acid residues. Based on these data, a mechanism for the inactivation of the class A beta-lactamases by TZB is proposed. In this scheme, initial acylation of Ser-70 by TZB and opening of the lactam ring are followed by one of several different events: (1) the rapid decomposition of TZB with loss of the enamine moiety to form the propiolylated enzyme, (2) an intramolecular nucleophilic displacement of the imine or enamine moiety by Ser-130 to form a cross-linked vinyl ether, and (3) hydrolysis of the imine or enamines to form a Ser-70-linked aldehyde.[1]

References

  1. Mechanism of inhibition of the class A beta -lactamases PC1 and TEM-1 by tazobactam. Observation of reaction products by electrospray ionization mass spectrometry. Yang, Y., Janota, K., Tabei, K., Huang, N., Siegel, M.M., Lin, Y.I., Rasmussen, B.A., Shlaes, D.M. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities