The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ca(2+)- and H(+)-dependent conformational changes of calbindin D(28k).

Calbindin D(28k) is a member of a large family of intracellular Ca(2+) binding proteins characterized by EF-hand structural motifs. Some of these proteins are classified as Ca(2+)-sensor proteins, since they are involved in transducing intracellular Ca(2+) signals by exposing a hydrophobic patch on the protein surface in response to Ca(2+) binding. The hydrophobic patch serves as an interaction site for target enzymes. Other members of this group are classified as Ca(2+)-buffering proteins, because they remain closed after Ca(2+) binding and participate in Ca(2+) buffering and transport functions. ANS (8-anilinonaphthalene-1-sulfonic acid) binding and affinity chromatography on a hydrophobic column suggested that both the Ca(2+)-free and Ca(2+)-loaded form of calbindin D(28k) have exposed hydrophobic surfaces. Since exposure of hydrophobic surface is unfavorable in the aqueous intracellular milieu, calbindin D(28k) most likely interacts with other cellular components in vivo. A Ca(2+)-induced conformational change was readily detected by several optical spectroscopic methods. Thus, calbindin D(28k) shares some of the properties of Ca(2+)-sensor proteins. However, the Ca(2+)-induced change in exposed hydrophobic surface was considerably less pronounced than that in calmodulin. The data also shows that calbindin D(28k) undergoes a rapid and reversible conformational change in response to a H(+) concentration increase within the physiological pH range. The pH-dependent conformational change was shown to reside mainly in EF-hands 1-3. Urea-induced unfolding of the protein at pH 6, 7, and 8 showed that the stability of calbindin D(28k) was increased in response to H(+) in the range examined. The results suggest that calbindin D(28k) may interact with targets in a Ca(2+)- and H(+)-dependent manner.[1]

References

  1. Ca(2+)- and H(+)-dependent conformational changes of calbindin D(28k). Berggård, T., Silow, M., Thulin, E., Linse, S. Biochemistry (2000) [Pubmed]
 
WikiGenes - Universities