Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion.
Pathways for the reduction of protein disulfide bonds are found in all organisms and are required for the reductive recycling of certain enzymes including the essential protein ribonucleotide reductase. An Escherichia coli strain that lacks both thioredoxin reductase and glutathione reductase grows extremely poorly. Here, we show that a mutation occurring at high frequencies in the gene ahpC, encoding a peroxiredoxin, restores normal growth to this strain. This mutation is the result of a reversible expansion of a triplet nucleotide repeat sequence, leading to the addition of one amino acid that converts the AhpC protein from a peroxidase to a disulfide reductase. The ready mutational interconversion between the two activities could provide an evolutionary advantage to E. coli.[1]References
- Conversion of a peroxiredoxin into a disulfide reductase by a triplet repeat expansion. Ritz, D., Lim, J., Reynolds, C.M., Poole, L.B., Beckwith, J. Science (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg