The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Post-translational modification of barley 14-3-3A is isoform-specific and involves removal of the hypervariable C-terminus.

The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. In a previous study of regulation of individual 14-3-3 isoforms in the germinating barley embryo, we found that a post-translationally modified, 28 kDa form of 14-3-3A was present in specific cell fractions of the germinated embryo. In the present study, we identify the nature of the modification of 14-3-3A, and show that the 28 kDa doublet is the result of cleavage of the C-terminus. The 28 kDa forms of 14-3-3A lack ten or twelve amino acid residues at the non-conserved C-terminus of the protein, respectively. Barley 14-3-3B and 14-3-3C are not modified in a similar way. Like the 30 kDa form, in vitro produced 28 kDa 14-3-3A is still capable of binding AHA2 H+-ATPase in an overlay assay. Our results show a novel isoform-specific post-translational modification of 14-3-3 proteins that is regulated in a tissue-specific and developmental way.[1]

References

  1. Post-translational modification of barley 14-3-3A is isoform-specific and involves removal of the hypervariable C-terminus. Testerink, C., van Zeijl, M.J., Drumm, K., Palmgren, M.G., Collinge, D.B., Kijne, J.W., Wang, M. Plant Mol. Biol. (2002) [Pubmed]
 
WikiGenes - Universities