The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.

MinD is a widely conserved ATPase that has been demonstrated to play a pivotal role in selection of the division site in eubacteria and chloroplasts. It is a member of the large ParA superfamily of ATPases that are characterized by a deviant Walker-type ATP-binding motif. MinD localizes to the cytoplasmic face of the inner membrane in Escherichia coli, and its association with the inner membrane is a prerequisite for membrane recruitment of the septation inhibitor MinC. However, the mechanism by which MinD associates with the membrane has proved enigmatic; it seems to lack a transmembrane domain and the amino acid sequence is devoid of hydrophobic tracts that might predispose the protein to interaction with lipids. In this study, we show that the extreme C-terminal region of MinD contains a highly conserved 8- to 12-residue sequence motif that is essential for membrane localization of the protein. We provide evidence that this motif forms an amphipathic helix that most likely mediates a direct interaction between MinD and membrane phospholipids. A model is proposed whereby the membrane-targeting motif mediates the rapid cycles of membrane attachment-release-reattachment that are presumed to occur during pole-to-pole oscillation of MinD in E. coli.[1]

References

  1. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Szeto, T.H., Rowland, S.L., Rothfield, L.I., King, G.F. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
 
WikiGenes - Universities