The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals.

Recently a Drosophila p53 protein has been identified that mediates apoptosis via a novel pathway involving the activation of the Reaper gene and subsequent inhibition of the inhibitors of apoptosis (IAPs). The present study found that CIAP1, a major mammalian homolog of Drosophila IAPs, is irreversibly inhibited (cleaved) during p53-dependent apoptosis and this cleavage is mediated by a serine protease. Serine protease inhibitors that block CIAP1 cleavage inhibit p53-dependent apoptosis. Furthermore, activation of the p53 protein increases the transcription of the HTRA2 gene, which encodes a serine protease that interacts with CIAP1 and potentiates apoptosis. These results demonstrate that the mammalian p53 protein may activate apoptosis through a novel pathway functionally similar to that in Drosophila, which involves HTRA2 and subsequent inhibition of CIAP1 by cleavage.[1]

References

  1. CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals. Jin, S., Kalkum, M., Overholtzer, M., Stoffel, A., Chait, B.T., Levine, A.J. Genes Dev. (2003) [Pubmed]
 
WikiGenes - Universities