The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia.

Metabolic-sensing ATP-sensitive K+ channels (KATP channels) adjust membrane excitability to match cellular energetic demand. In the heart, KATP channel activity has been linked to homeostatic shortening of the action potential under stress, yet the requirement of channel function in securing cardiac electrical stability is only partially understood. Here, upon catecholamine challenge, disruption of KATP channels, by genetic deletion of the pore-forming Kir6.2 subunit, produced defective cardiac action potential shortening, predisposing the myocardium to early afterdepolarizations. This deficit in repolarization reserve, demonstrated in Kir6.2-knockout hearts, translated into a high risk for induction of triggered activity and ventricular dysrhythmia. Thus, intact KATP channel function is mandatory for adequate repolarization under sympathetic stress providing electrical tolerance against triggered arrhythmia.[1]

References

  1. Genetic disruption of Kir6.2, the pore-forming subunit of ATP-sensitive K+ channel, predisposes to catecholamine-induced ventricular dysrhythmia. Liu, X.K., Yamada, S., Kane, G.C., Alekseev, A.E., Hodgson, D.M., O'Cochlain, F., Jahangir, A., Miki, T., Seino, S., Terzic, A. Diabetes (2004) [Pubmed]
 
WikiGenes - Universities