Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein.
We have identified a putative coiled-coil motif within the amino-terminal half of the ebolavirus VP35 protein. Cross-linking studies demonstrated the ability of VP35 to form trimers, consistent with the presence of a functional coiled-coil motif. VP35 mutants lacking the coiled-coil motif or possessing a mutation designed to disrupt coiled-coil function were defective in oligomerization, as deduced by co-immunoprecipitation studies. VP35 inhibits signaling that activates interferon regulatory factor 3 (IRF-3) and inhibits (IFN)-alpha/beta production. Experiments comparing the ability of VP35 mutants to block IFN responses demonstrated that the VP35 amino-terminus, which retains the putative coiled-coil motif, was unable to inhibit IFN responses, whereas the VP35 carboxy-terminus weakly inhibited the activation of IFN responses. IFN-antagonist function was restored when a heterologous trimerization motif was fused to the carboxy-terminal half of VP35, suggesting that an oligomerization function at the amino-terminus facilitates an " IFN-antagonist" function exerted by the carboxy-terminal half of VP35.[1]References
- Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. Reid, S.P., Cárdenas, W.B., Basler, C.F. Virology (2005) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg