The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Heat of hydrogenation of 1,5-dehydroquadricyclane. A computational and experimental study of a highly pyramidalized alkene.

The radical anion of the highly pyramidalized alkene 1,5-dehydroquadricyclane (1) was generated in the gas phase from the Squires reaction of 1,5-bis(trimethylsilyl)quadricyclane with F-/F2. The electron binding energy and proton affinity of 1*- were determined by bracketing experiments to be 0.6 +/- 0.1 eV and 386 +/- 5 kcal/ mol, respectively. These values are in good agreement with values predicted by density functional theory (B3LYP/6-31+G*) and ab initio (CASPT2/6-31+G*) calculations. The experimental heat of hydrogenation of 1, obtained from a thermochemical cycle, was found to be 91 +/- 9 kcal/ mol. This value of deltaH(H2) leads to values of 67 +/- 9 kcal/ mol for the olefin strain energy (OSE) of 1, 172 +/- 9 kcal/ mol for its heat of formation, and 23 +/- 9 kcal/ mol for its pi bond dissociation enthalpy. Since the retro-Diels-Alder reaction of neutral 1 is computed to be highly exothermic, the finding that 1*- apparently does not undergo a retro-Diels-Alder reaction is of particular interest. The B3LYP/6-31+G* optimized geometry of 1 suggests that the bonding in this alkene is partially delocalized, presumably because the highly pyramidalized double bond in 1 interacts with the distal cyclopropane bonds in a manner that eventually leads to a retro-Diels-Alder reaction. The good agreement of the B3LYP and (2/2)CASPT2 values for the heat of hydrogenation and OSE of 1 with the experimentally derived values provides indirect evidence for the correctness of the B3LYP prediction that the equilibrium geometry of 1 lies part way along the reaction coordinate to the transition structure for the retro-Diels-Alder reaction.[1]

References

  1. Heat of hydrogenation of 1,5-dehydroquadricyclane. A computational and experimental study of a highly pyramidalized alkene. Hoenigman, R.L., Kato, S., Bierbaum, V.M., Borden, W.T. J. Am. Chem. Soc. (2005) [Pubmed]
 
WikiGenes - Universities