The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen.

We conducted a cross-shift study with 66 bitumen-exposed mastic asphalt workers and 49 construction workers without exposure to bitumen. Exposure was assessed using personal monitoring of airborne bitumen exposure, urinary 1-hydroxypyrene (1-OHP), and the sum of 1-, 2 + 9-,3-,4-hydroxyphenanthrene (OHPH). Genotoxic effects in WBC were determined with nonspecific DNA adduct levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and the formation of DNA strand breaks and alkali-labile sites. Concentration of fumes and aerosols of bitumen correlated significantly with the concentrations of 1-OHP and OHPH after shift (r(s) = 0.27; P = 0.03 and r(s) = 0.55; P < 0.0001, respectively). Bitumen-exposed workers had more DNA strand breaks than the reference group (P < 0.0001) at both time points and a significant correlation with 1-OHP and OHPH in the postshift urines (r(s) = 0.32; P = 0.001 and r(s) = 0.27; P = 0.004, respectively). Paradoxically, we measured higher levels of DNA strand breaks, although not significant, in both study groups before shift. 8-OxodGuo adduct levels did not correlate with DNA strand breaks. Further, 8-oxodGuo levels were associated neither with personal exposure to bitumen nor with urinary metabolite concentrations. Significantly more DNA adducts were observed after shift not only in bitumen-exposed workers but also in the reference group. Only low-exposed workers had significantly elevated 8-oxodGuo adduct levels before as well as after shift (P = 0.0002 and P = 0.02, respectively). Our results show that exposure to fumes and aerosols of bitumen may contribute to an increased DNA damage assessed with strand breaks.[1]

References

  1. Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen. Marczynski, B., Raulf-Heimsoth, M., Preuss, R., Kappler, M., Schott, K., Pesch, B., Zoubek, G., Hahn, J.U., Mensing, T., Angerer, J., Käfferlein, H.U., Brüning, T. Cancer Epidemiol. Biomarkers Prev. (2006) [Pubmed]
 
WikiGenes - Universities