The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions.

An evaluation of peat moss plus crude soybean oil (PMSO) for mitigation of explosive contamination of soil at military facilities was performed using large soil lysimeters under field conditions. Actual range soils were used, and two PMSO preparations with different ratios of peat moss:soybean oil (1:1, PO1; 1:2, PO2) were compared to a control lysimeter that received no PMSO. PMSO was applied as a 10 cm layer on top of the soil, and Composition B detonation residues from a 55-mm mortar round were applied at the surface of each of the lysimeters. Dissolution of the residues occurred during natural precipitation events over the course of 18 months. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) emanating from the Composition B residues were significantly reduced by the PO2 PMSO material compared to the untreated control. Soil pore water RDX concentrations and RDX fluxes were reduced over 100-fold compared to the control plots at comparable depths. Residual RDX in the soil profile was also significantly lower in the PMSO treated plots. PO1 PMSO resulted in lower reductions in RDX transport than the PO2 PMSO. The transport of the RDX breakdown product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was also greatly reduced by the PMSO materials. Results were in general agreement with a previously developed fate and transport model describing PMSO effectiveness. These results demonstrate the potential effectiveness of the inexpensive and environmentally benign PMSO technology for reducing the subsurface loading of explosives at training ranges and other military facilities.[1]


WikiGenes - Universities