The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Apparent genetic complexity generated by developmental thresholds: the apterous locus in Drosophila melanogaster.

Mutations at the apterous ( ap) locus in Drosophila melanogaster give rise to three distinct phenotypes: aberrant wings, female sterility and precocious adult death. The wing phenotype includes five types of abnormality: blistering, deficiencies, duplications, high-order repetitions and transformation of structures. The mildest phenotype is seen with homozygous apblt animals which have either normal or slightly blistered wings. Most alleles produce, in the homozygote, a deficient wing in which part or all of the wing margin and wing blade is missing, but wing hinge and notum regions are normal. Animals hemizygous for each of 20 ap alleles, as well as apID/apXa heterozygotes, show duplication of parts of the notum associated with complete wing deficiency. Animals heterozygous for apc and the other tested ap alleles show repetitions of parts of the anterior wing margin, an engrailed-like transformation of posterior wing margin into anterior margin or both. Both apblt and apc show similar phenotypes in homozygotes and hemizygotes, yet both produce a less extreme phenotype than that of the other hemizygotes, suggesting that neither mutation causes loss of the entire ap+ function. The 15 alleles that cause precocious death and female sterility occur in six complementation groups based on complementation for these phenotypes. This supports the previous conclusion that the effects of apterous mutations on the wing do not correlate with their effects on viability and fertility. We propose an explanation for the effects of apterous mutations on the wing in which quantitative reductions in the activity of gene product give rise to qualitatively different phenotypes because of different threshold requirements of the ap+ function for critical events in wing disc development.[1]


WikiGenes - Universities