Subunit structure of ATP synthase from Chloroflexus aurantiacus.
An ATP synthase has been isolated from green nonsulfur photosynthetic bacterium Chloroflexus aurantiacus, a representative of a lower branch of eubacteria. The enzyme, reconstituted with the bacterial lipids into proteoliposomes, is shown to catalyze [32P]Pi-ATP exchange (at a rate of 180 nmol [32P]ATP/min/mg). The ATP synthase is composed of nine polypeptide species (60, 50, 33, 19, 16.5, 15.5, 14.5, 13, and 8 kDa as determined by urea-SDS-PAGE). The catalytic part of the ATP synthase (which is detached by chloroform treatment) contains the first four polypeptides. In the intact ATP synthase the 14.5 and 13 kDa polypeptides are connected by disulfide bonds to form a heterodimer of 25 kDa.[1]References
- Subunit structure of ATP synthase from Chloroflexus aurantiacus. Yanyushin, M.F. FEBS Lett. (1993) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg