Lead-ion-induced cleavage of RNase P RNA.
Pb(2+)-induced hydrolysis of RNase P RNAs from Escherichia coli and the thermophilic eubacterium Thermus thermophilus HB8 revealed one prominent site-specific cleavage in the two RNAs and several minor cleavage sites in structurally corresponding regions of both RNAs. Data presented here and in a previous study [Kazakov, S. & Altman, S. (1991) Proc. Natl Acad. Sci. USA 88, 9193-9197] provide evidence for several ubiquitous metal-ion-binding sites in eubacterial RNase P RNA subunits. With the T. thermophilus RNase P RNA, susceptibility to Pb(2+)-induced strand scission at the most prominent site was hypersensitive at the temperature of highest enzyme activity (55 degrees C). Pb2+ hydrolysis at this site was strongly reduced at a temperature of 37 degrees C, where processing is also inefficient. For E. coli RNase P RNA, specific changes in the lead hydrolysis pattern were observed due to the presence of excess tRNA. Thus, Pb(2+)-induced hydrolysis seems suitable to sense different conformations of RNase P RNAs. The T. thermophilus RNase P RNA, in particular, displayed significant processing activity after severe fragmentation by Pb2+, and therefore appears to be suited for reconstituting an active enzyme from RNA subfragments.[1]References
- Lead-ion-induced cleavage of RNase P RNA. Ciesiolka, J., Hardt, W.D., Schlegl, J., Erdmann, V.A., Hartmann, R.K. Eur. J. Biochem. (1994) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg