Reversion by Fe(III) of the inhibition by hydroxamic acids of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica.
The specific inhibitory effect of benzhydroxamic acid on the cyanide-insensitive respiration could be reversed in whole cells of the yeast Saccharomycopsis lipolytica, by addition of Fe(III), in a way suggesting a competition between the added iron and an enzyme-bound metallic ion, both central atoms for the ligand benzhydroxamic acid. The possibility that added metal ions modify the penetration of BHAM into the cells was ruled out. Co(II), Cu(II) and Al(III) could substitute for Fe(III). A linear relation between the concentration in added Fe(III) and the reversed respiration rate was observed. At a given cell concentration, the reversion by added Fe(III) of the inhibitory effect of benzhydroxamic acid on the alternative respiration appeared more related to the degree of inhibition rather than to the concentration in added inhibitor. Increasing cell concentrations required increasing amounts of Fe(III) to reach the same level of reversion. No reversal occurred at concentrations in added Fe(III) lower than 0.1 mM, whatever the benzhydroxamic concentration, the cell concentration or the yeast batch.[1]References
- Reversion by Fe(III) of the inhibition by hydroxamic acids of the cyanide-insensitive respiration in the yeast Saccharomycopsis lipolytica. Henry, M.F., Nyns, E.J. Arch. Microbiol. (1977) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg