The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The proteasome activator 11 S regulator or PA28. Contribution By both alpha and beta subunits to proteasome activation.

The proteasome 11 S regulator ( REG) consists of two homologous subunits, REGalpha and REGbeta. Each subunit is capable of activating the proteasome, and when combined, they form superactive REGalpha/REGbeta complexes. We have previously shown that a highly conserved loop in the REGalpha crystal structure is critical for proteasome activation. We now show that hetero-oligomers formed from REGalpha activation loop mutants and wild-type REGbeta or vice versa are partially active. By contrast, hetero-oligomers bearing mutations in the activation loops of REGalpha and REGbeta subunits are inactive, demonstrating that both alpha and beta subunits contribute to proteasome activation. We have also characterized REG proteins with mutations near or at their C termini. Partially active REGalpha(Y249C) and REGalpha(M247V) and an inactive REGalpha subunit bearing five additional C-terminal amino acids formed active hetero-oligomers with REGbeta. REGbeta subunits lacking 1, 2, or 9 C-terminal amino acids did not bind or activate the proteasome, but each of these mutants formed partially active hetero-oligomers with the monomer REGalpha(N50Y). However, hetero-oligomers formed from REG subunits lacking the last 14 amino acids were unable to bind the proteasome. Thus, C-terminal regions of both alpha and beta subunits are required for hetero-oligomers to bind the proteasome.[1]

References

 
WikiGenes - Universities