The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Queuosine     3-amino-7-[[[(1S,4S,5R)-4,5- dihydroxy-1...

Synonyms: nucleoside Q, Q (nucleoside), CHEBI:60193, CPD-13053, AC1L2751, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of nucleoside Q

  • Isogenic pairs of Escherichia coli, containing or lacking the tRNA-transglycosylase (JE 7335, tgt+ lacZ+ and JE 7337, tgt- lacZ+; JE 7334, tgt+ lacZ- and JE 7336, tgt- lacZ-), have been employed to study the function of queuosine in tRNA [1].
  • Genetic analysis of ykvJKLM mutants in Acinetobacter confirmed that each was essential for queuosine biosynthesis, and the genes were renamed queCDEF [2].
  • These results, taken together with other previous studies, suggest that a decreased queuosine content of tRNA may be a general feature of neoplasms and may be useful for grading malignancy and perhaps also for the prediction of survival in human lung cancer [3].
  • Specific lack of the hypermodified nucleoside, queuosine, in hepatoma mitochondrial aspartate transfer RNA and its possible biological significance [4].
  • Full expression of the virulence genes of Shigella flexneri requires the presence of two modified nucleosides in the tRNA [queuosine, Q34, present in the wobble position (position 34) and 2-methylthio-N6-isopentenyladenosine (ms2i6A37, adjacent to and 3' of the anticodon)] [5].
 

High impact information on nucleoside Q

 

Chemical compound and disease context of nucleoside Q

 

Biological context of nucleoside Q

  • Nucleotide sequence analysis showed that tRNAAsn contains three derivatives of the Q nucleoside, possibly Q precursors, in addition to guanosine in the first position of the anticodon [16].
  • The N-terminal catalytic domain folds into an (alpha/beta)(8) barrel with a characteristic zinc-binding site, showing structural similarity with that of the bacterial queuosine TGT (QueTGT), which is involved in queuosine (7-[[(4,5-cis-dihydroxy-2-cyclopenten-1-yl)-amino]methyl]-7-deazaguanosine) biosynthesis and targets the tRNA anticodon [17].
  • Colicin E5 specifically cleaves four tRNAs in Escherichia coli that contain the modified nucleotide queuosine (Q) at the wobble position, thereby preventing protein synthesis and ultimately resulting in cell death [18].
  • Plasmids containing the ORF encoding the 39-kDa protein (ORF 39) complemented a mutation in Q biosynthesis after the Tgt step [19].
  • Queuosine (Q), one of the most complex modifications occurring at the wobble position of tRNAs with GUN anticodons, is implicated in a number of biological activities, including accuracy of decoding, virulence, and cellular differentiation [20].
 

Anatomical context of nucleoside Q

  • We designate this the queuine salvage activity because it apparently is responsible for the ability of intact Vero cells to salvage queuosine base from tRNA degraded during the normal turnover process [21].
  • In addition, because of the 7-substituent, Q nucleoside also is hypothesized to bind as the syn conformer and, therefore, to be a potential B-lymphocyte activator [22].
  • Therefore, it was shown by direct measurements that the HxGC(3) cell line is completely lacking in queuosine-modified tRNA due to loss of functional TGRase, while the MCF-7 cell line has an inefficient queuine salvage mechanism resulting in a significant deficiency of queuosine-modified tRNA [23].
  • These results were compared with data obtained from normal human fibroblast (HFF) cultures which maintain 100% queuosine-modified tRNA populations [23].
  • These techniques can be applied to any cultured cell types to determine specific lesions of the queuosine modification system, which have been suggested to be associated with neoplastic progression [23].
 

Associations of nucleoside Q with other chemical compounds

  • The new nucleoside has been characterized as an epoxy derivative of queuosine: 7-(5-[(2,3-epoxy-4,5-dihydroxycyclopent-1-yl)amino]methyl)-7-de azaguanosine, oQ, based on data from directly combined liquid chromatography/mass spectrometry, high resolution mass spectrometry, and proton NMR spectroscopy [24].
  • The eukaryotic tRNA:guanine transglycosylase (TGT) catalyses the base-for-base exchange of guanine for queuine (the q-base)--a nutrition factor for eukaryotes--at position 34 of the anticodon of tRNAsGUN (where 'N' represents one of the four canonical tRNA nucleosides), yielding the modified tRNA nucleoside queuosine (Q) [25].
  • Biochemical approaches and mass spectrometry investigations revealed that YadB transfers the activated glutamate on the cyclopenthene-diol ring of the modified nucleoside queuosine posttranscriptionally inserted at the wobble position of the anticodon-loop to form glutamyl-queuosine [26].
  • This positions the dihydroxycyclopentenediol ring of queuosine in proper orientation for hydrogen bonding with the backbone of the neighboring uridine 33 residue [27].
  • In addition to the Q nucleoside, these tRNAs appear to differ by the presence (tRNATyr1delta) or absence (tRNATyr1gamma) of 5-methylcytidine [28].
 

Gene context of nucleoside Q

  • Genetic analysis identifies a function for the queC (ybaX) gene product at an initial step in the queuosine biosynthetic pathway in Escherichia coli [20].
  • Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA [29].
  • In eubacteria, the tRNA transglycosylase (Tgt) in specific tRNAs exchanges a guanine in the anticodon for 7-aminomethyl-7-deazaguanine, which is finally converted to queuosine [30].
  • The enzyme tRNA-guanine transglycosylase, which is a key enzyme in biosynthesis of queuosine in tRNA (inserting Q base into tRNA by a transglycosylase reaction), is active in both tumor cells and normal cells [31].
 

Analytical, diagnostic and therapeutic context of nucleoside Q

References

  1. Queuosine modification in tRNA and expression of the nitrate reductase in Escherichia coli. Jänel, G., Michelsen, U., Nishimura, S., Kersten, H. EMBO J. (1984) [Pubmed]
  2. From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold. Van Lanen, S.G., Reader, J.S., Swairjo, M.A., de Crécy-Lagard, V., Lee, B., Iwata-Reuyl, D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. Relationship of the queuine content of transfer ribonucleic acids to histopathological grading and survival in human lung cancer. Huang, B.S., Wu, R.T., Chien, K.Y. Cancer Res. (1992) [Pubmed]
  4. Specific lack of the hypermodified nucleoside, queuosine, in hepatoma mitochondrial aspartate transfer RNA and its possible biological significance. Randerath, E., Agrawal, H.P., Randerath, K. Cancer Res. (1984) [Pubmed]
  5. Transfer RNA modification, temperature and DNA superhelicity have a common target in the regulatory network of the virulence of Shigella flexneri: the expression of the virF gene. Durand, J.M., Dagberg, B., Uhlin, B.E., Björk, G.R. Mol. Microbiol. (2000) [Pubmed]
  6. Three-dimensional structure of hyper-modified nucleoside Q located in the wobbling position of tRNA. Yokoyama, S., Miyazawa, T., Iitaka, Y., Yamaizumi, Z., Kasai, H., Nishimura, S. Nature (1979) [Pubmed]
  7. Queuosine modification of the wobble base in tRNAHis influences 'in vivo' decoding properties. Meier, F., Suter, B., Grosjean, H., Keith, G., Kubli, E. EMBO J. (1985) [Pubmed]
  8. Queuosine modification in tRNA and expression of genes of electron transport chains. Kersten, H. Prog. Nucleic Acid Res. Mol. Biol. (1984) [Pubmed]
  9. The RNA-binding PUA domain of archaeal tRNA-guanine transglycosylase is not required for archaeosine formation. Sabina, J., Söll, D. J. Biol. Chem. (2006) [Pubmed]
  10. tRNA modification by S-adenosylmethionine:tRNA ribosyltransferase-isomerase. Assay development and characterization of the recombinant enzyme. Van Lanen, S.G., Kinzie, S.D., Matthieu, S., Link, T., Culp, J., Iwata-Reuyl, D. J. Biol. Chem. (2003) [Pubmed]
  11. Enzymatic synthesis of Q nucleoside containing mannose in the anticodon of tRNA: isolation of a novel mannosyltransferase from a cell-free extract of rat liver. Okada, N., Nishimura, S. Nucleic Acids Res. (1977) [Pubmed]
  12. Specific fluorescent labeling of 7-(aminomethyl)-7-deazaguanosine located in the anticodon of tRNATyr isolated from E. coli mutant. Kasai, H., Shindo-Okada, N., Noguchi, S., Nishimura, S. Nucleic Acids Res. (1979) [Pubmed]
  13. Transfer ribonucleic acid guanine transglycosylase isolated from rat liver. Shindo-Okada, N., Okada, N., Ohgi, T., Goto, T., Nishimura, S. Biochemistry (1980) [Pubmed]
  14. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. Frey, B., McCloskey, J., Kersten, W., Kersten, H. J. Bacteriol. (1988) [Pubmed]
  15. Administration of queuine to mice relieves modified nucleoside queuosine deficiency in Ehrlich ascites tumor tRNA. Katze, J.R., Beck, W.T. Biochem. Biophys. Res. Commun. (1980) [Pubmed]
  16. Detection of nucleoside Q precursor in methyl-deficient E.coli tRNA. Okada, N., Yasuda, T., Nishimura, S. Nucleic Acids Res. (1977) [Pubmed]
  17. Crystal structure of archaeosine tRNA-guanine transglycosylase. Ishitani, R., Nureki, O., Fukai, S., Kijimoto, T., Nameki, N., Watanabe, M., Kondo, H., Sekine, M., Okada, N., Nishimura, S., Yokoyama, S. J. Mol. Biol. (2002) [Pubmed]
  18. Structural and mutational studies of the catalytic domain of colicin E5: a tRNA-specific ribonuclease. Lin, Y.L., Elias, Y., Huang, R.H. Biochemistry (2005) [Pubmed]
  19. Structure and organization of Escherichia coli genes involved in biosynthesis of the deazaguanine derivative queuine, a nutrient factor for eukaryotes. Reuter, K., Slany, R., Ullrich, F., Kersten, H. J. Bacteriol. (1991) [Pubmed]
  20. Genetic analysis identifies a function for the queC (ybaX) gene product at an initial step in the queuosine biosynthetic pathway in Escherichia coli. Gaur, R., Varshney, U. J. Bacteriol. (2005) [Pubmed]
  21. Queuine salvage in mammalian cells. Evidence that queuine is generated from queuosine 5'-phosphate. Gündüz, U., Katze, J.R. J. Biol. Chem. (1984) [Pubmed]
  22. Queuosine metabolism: possible relation to B-cell activation by C8 derivatives of guanosine. Katze, J.R. Proc. Soc. Exp. Biol. Med. (1985) [Pubmed]
  23. Determination of queuosine modification system deficiencies in cultured human cells. Morris, R.C., Galicia, M.C., Clase, K.L., Elliott, M.S. Mol. Genet. Metab. (1999) [Pubmed]
  24. Isolation and structure elucidation of an epoxide derivative of the hypermodified nucleoside queuosine from Escherichia coli transfer RNA. Phillipson, D.W., Edmonds, C.G., Crain, P.F., Smith, D.L., Davis, D.R., McCloskey, J.A. J. Biol. Chem. (1987) [Pubmed]
  25. Involvement of protein kinase C in the control of tRNA modification with queuine in HeLa cells. Langgut, W., Reisser, T. Nucleic Acids Res. (1995) [Pubmed]
  26. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon. Blaise, M., Becker, H.D., Lapointe, J., Cambillau, C., Giegé, R., Kern, D. Biochimie (2005) [Pubmed]
  27. The effect of queuosine on tRNA structure and function. Morris, R.C., Brown, K.G., Elliott, M.S. J. Biomol. Struct. Dyn. (1999) [Pubmed]
  28. The purification of Q-containing tRNAs by periodate modification. Purification and nucleoside composition of two related Drosophila tyrosine tRNAs. Wosnick, M.A., White, B.N. Biochim. Biophys. Acta (1979) [Pubmed]
  29. Isolation and characterization of an Escherichia coli mutant lacking tRNA-guanine transglycosylase. Function and biosynthesis of queuosine in tRNA. Noguchi, S., Nishimura, Y., Hirota, Y., Nishimura, S. J. Biol. Chem. (1982) [Pubmed]
  30. Mutations in the Escherichia coli fnr and tgt genes: control of molybdate reductase activity and the cytochrome d complex by fnr. Frey, B., Jänel, G., Michelsen, U., Kersten, H. J. Bacteriol. (1989) [Pubmed]
  31. Characterization and analysis of oncofetal tRNA and its possible application for cancer diagnosis and therapy. Nishimura, S., Shindo-Okada, N., Kasai, H., Kuchino, Y., Noguchi, S., Iigo, M., Hoshi, A. Recent Results Cancer Res. (1983) [Pubmed]
  32. Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine. Reader, J.S., Metzgar, D., Schimmel, P., de Crécy-Lagard, V. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities