The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

ACTH-Secreting Pituitary Adenoma

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ACTH-Secreting Pituitary Adenoma

 

High impact information on ACTH-Secreting Pituitary Adenoma

 

Chemical compound and disease context of ACTH-Secreting Pituitary Adenoma

  • In an attempt to delineate the mechanism and the site of action of cyproheptadine and dopaminergic agonists as well as hormones including thyrotropin-releasing hormone (TRH) and hydrocortisone, the effects of these substances on ACTH secretion from corticotroph adenoma cells in culture were examined [6].
  • Only one of five corticotroph adenomas responded to GnRH with an increase in inositol phospholipid turnover of 19% [11].
  • CONCLUSIONS: A combined stimulus using CRH and desmopressin appears to induce a higher ACTH output from pituitary corticotroph adenomas during BIPSS, which may improve the diagnostic sensitivity of this procedure [12].
  • High plasma ACTH precursor concentrations were especially found in dexamethasone-resistant dogs with large corticotroph adenomas, some of them probably of PI origin [13].
  • A group of cases due to corticotroph adenoma has been reported whose excessive ACTH secretion is reduced by treatment with the dopamine agonist bromocriptine, in which it is suggested that the tumour cells arise from a subset of corticotrophs of pars intermedia origin.(ABSTRACT TRUNCATED AT 400 WORDS)[14]
 

Biological context of ACTH-Secreting Pituitary Adenoma

 

Anatomical context of ACTH-Secreting Pituitary Adenoma

 

Gene context of ACTH-Secreting Pituitary Adenoma

  • The multihormonal response to CRH could be explained by cosecretion of other hormones together with ACTH from corticotroph adenoma, by an effect of CRH on pituitary blood flow, or by a paracrine action of pituitary corticotrophs on adjacent normal pituitary cells [18].
  • These results suggest that the sensitivity of the pituitary corticotroph adenomas to CRF in some patients is low [19].
  • In a series of human corticotroph adenomas, we recently found predominant mRNA expression of somatostatin (SS) receptor subtype 5 (sst5) [20].
  • Twenty-two out of twenty-four tumors contained galanin with notably high levels in corticotroph adenomas, varying levels in clinically inactive tumors, and low levels in GH secreting adenomas [21].
  • The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5 [22].
 

Analytical, diagnostic and therapeutic context of ACTH-Secreting Pituitary Adenoma

References

  1. Octreotide and related somatostatin analogs in the diagnosis and treatment of pituitary disease and somatostatin receptor scintigraphy. Lamberts, S.W., Hofland, L.J., de Herder, W.W., Kwekkeboom, D.J., Reubi, J.C., Krenning, E.P. Frontiers in neuroendocrinology. (1993) [Pubmed]
  2. Expression of 11 beta-hydroxysteroid dehydrogenase isoenzymes in the human pituitary: induction of the type 2 enzyme in corticotropinomas and other pituitary tumors. Korbonits, M., Bujalska, I., Shimojo, M., Nobes, J., Jordan, S., Grossman, A.B., Stewart, P.M. J. Clin. Endocrinol. Metab. (2001) [Pubmed]
  3. Hyperprolactinemia in Cushing's disease and Nelson's syndrome. Yamaji, T., Ishibashi, M., Teramoto, A., Fukushima, T. J. Clin. Endocrinol. Metab. (1984) [Pubmed]
  4. Acquired prolactin deficiency (APD) after treatment for Cushing's disease is a reliable marker of irreversible severe GHD but does not reflect disease status. Mukherjee, A., Murray, R.D., Teasdale, G.M., Shalet, S.M. Clin. Endocrinol. (Oxf) (2004) [Pubmed]
  5. Cyclical Cushing's syndrome--a trap for the unwary. Loh, K.C. Singapore medical journal. (1999) [Pubmed]
  6. Direct effects of thyrotropin-releasing hormone, cyproheptadine, and dopamine on adrenocorticotropin secretion from human corticotroph adenoma cells in vitro. Ishibashi, M., Yamaji, T. J. Clin. Invest. (1981) [Pubmed]
  7. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Liu, W., Asa, S.L., Ezzat, S. Brain Pathol. (2002) [Pubmed]
  8. Molecular pathology shows p16 methylation in nonadenomatous pituitaries from patients with Cushing's disease. Simpson, D.J., McNicol, A.M., Murray, D.C., Bahar, A., Turner, H.E., Wass, J.A., Esiri, M.M., Clayton, R.N., Farrell, W.E. Clin. Cancer Res. (2004) [Pubmed]
  9. Differential regulation of proopiomelanocortin and pituitary-restricted transcription factor (TPIT), a new marker of normal and adenomatous human corticotrophs. Vallette-Kasic, S., Figarella-Branger, D., Grino, M., Pulichino, A.M., Dufour, H., Grisoli, F., Enjalbert, A., Drouin, J., Brue, T. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  10. Identification of adrenocorticotropin receptor messenger ribonucleic acid in the human pituitary and its loss of expression in pituitary adenomas. Morris, D.G., Kola, B., Borboli, N., Kaltsas, G.A., Gueorguiev, M., McNicol, A.M., Ferrier, R., Jones, T.H., Baldeweg, S., Powell, M., Czirják, S., Hanzély, Z., Johansson, J.O., Korbonits, M., Grossman, A.B. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  11. Inositol phospholipid turnover and intracellular Ca2+ responses to thyrotrophin-releasing hormone, gonadotrophin-releasing hormone and arginine vasopressin in pituitary corticotroph and somatotroph adenomas. Levy, A., Lightman, S.L., Hoyland, J., Mason, W.T. Clin. Endocrinol. (Oxf) (1990) [Pubmed]
  12. The application of a combined stimulation with CRH and desmopressin during bilateral inferior petrosal sinus sampling in patients with Cushing's syndrome. Tsagarakis, S., Kaskarelis, I.S., Kokkoris, P., Malagari, C., Thalassinos, N. Clin. Endocrinol. (Oxf) (2000) [Pubmed]
  13. Plasma concentrations of ACTH precursors correlate with pituitary size and resistance to dexamethasone in dogs with pituitary-dependent hyperadrenocorticism. Bosje, J.T., Rijnberk, A., Mol, J.A., Voorhout, G., Kooistra, H.S. Domest. Anim. Endocrinol. (2002) [Pubmed]
  14. Histopathology of the pituitary. Doniach, I. Clinics in endocrinology and metabolism. (1985) [Pubmed]
  15. In vitro corticotropin-releasing hormone (CRH) stimulation of adrenocorticotropin release from corticotroph adenoma cells: effect of prolonged exposure to CRH and its interaction with cortisol. Grino, M., Boudouresque, F., Conte-Devolx, B., Gunz, G., Grisoli, F., Oliver, C., Jaquet, P. J. Clin. Endocrinol. Metab. (1988) [Pubmed]
  16. Cushing's disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Karl, M., Lamberts, S.W., Koper, J.W., Katz, D.A., Huizenga, N.E., Kino, T., Haddad, B.R., Hughes, M.R., Chrousos, G.P. Proc. Assoc. Am. Physicians (1996) [Pubmed]
  17. Identification of corticotrophs in the human pituitary with mAB lu-5, a novel immunocytochemical marker. Kovacs, K., Ryan, N., Stefaneanu, L. Pathol. Res. Pract. (1987) [Pubmed]
  18. A multihormonal response to corticotropin-releasing hormone in inferior petrosal sinus blood of patients with Cushing's disease. Allolio, B., Günther, R.W., Benker, G., Reinwein, D., Winkelmann, W., Schulte, H.M. J. Clin. Endocrinol. Metab. (1990) [Pubmed]
  19. Effects of corticotropin-releasing factor and other materials on adrenocorticotropin secretion from pituitary glands of patients with Cushing's disease in vitro. Suda, T., Tomori, N., Tozawa, F., Demura, H., Shizume, K. J. Clin. Endocrinol. Metab. (1984) [Pubmed]
  20. Distinct functional properties of native somatostatin receptor subtype 5 compared with subtype 2 in the regulation of ACTH release by corticotroph tumor cells. van der Hoek, J., Waaijers, M., van Koetsveld, P.M., Sprij-Mooij, D., Feelders, R.A., Schmid, H.A., Schoeffter, P., Hoyer, D., Cervia, D., Taylor, J.E., Culler, M.D., Lamberts, S.W., Hofland, L.J. Am. J. Physiol. Endocrinol. Metab. (2005) [Pubmed]
  21. Galanin in pituitary adenomas. Grenbäck, E., Bjellerup, P., Wallerman, E., Lundblad, L., Anggård, A., Ericson, K., Aman, K., Landry, M., Schmidt, W.E., Hökfelt, T., Hulting, A.L. Regul. Pept. (2004) [Pubmed]
  22. The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Hofland, L.J., van der Hoek, J., Feelders, R., van Aken, M.O., van Koetsveld, P.M., Waaijers, M., Sprij-Mooij, D., Bruns, C., Weckbecker, G., de Herder, W.W., Beckers, A., Lamberts, S.W. Eur. J. Endocrinol. (2005) [Pubmed]
 
WikiGenes - Universities