The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Radiation Injuries

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Radiation Injuries

 

High impact information on Radiation Injuries

 

Chemical compound and disease context of Radiation Injuries

 

Biological context of Radiation Injuries

 

Anatomical context of Radiation Injuries

 

Gene context of Radiation Injuries

  • This study investigated whether SC-'236, a selective inhibitor of COX-2, potentiates antitumor efficacy of radiation without increasing radiation injury to normal tissue [26].
  • Transforming growth factor-beta (TGF-beta) has been proposed to be critical in tissue repair mechanisms resulting from radiation injury [27].
  • To assess the role of 8-oxoguanine glycosylase (OGG1) in the cell defense against radiation injury, the radiation-induced cytotoxicities were compared between the mutant type KG-1 featuring a loss of OGG1 activity due to a homozygous mutation of Arg 229 Gln, and the wild type U937 [28].
  • Furthermore, MCF-7 cells underwent apoptosis in response to radiation injury, which was also reversed by CUGBP2 siRNAs [29].
  • CONCLUSIONS: The increase in the density of NPY-, SP- and TH-immunoreactive nerves in the irradiated bladders may be due to axonal sprouting which contributes to the symptoms of radiation injury [30].
 

Analytical, diagnostic and therapeutic context of Radiation Injuries

References

  1. Captopril preserves function and ultrastructure in experimental radiation nephropathy. Cohen, E.P., Molteni, A., Hill, P., Fish, B.L., Ward, W.F., Moulder, J.E., Carone, F.A. Lab. Invest. (1996) [Pubmed]
  2. Fatal hemorrhage complicating carcinoma of the esophagus. Report of four cases. Alrenga, D.P. Am. J. Gastroenterol. (1976) [Pubmed]
  3. Increased transforming growth factor beta (TGF-beta) immunoreactivity is independently associated with chronic injury in both consequential and primary radiation enteropathy. Richter, K.K., Langberg, C.W., Sung, C.C., Hauer-Jensen, M. Int. J. Radiat. Oncol. Biol. Phys. (1997) [Pubmed]
  4. Succinylcholine-induced hyperkalemia in the rat following radiation injury to muscle. Cairoli, V.J., Ivankovich, A.D., Vucicevic, D., Patel, K. Anesth. Analg. (1982) [Pubmed]
  5. Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Kim, J.H., Brown, S.L., Kolozsvary, A., Jenrow, K.A., Ryu, S., Rosenblum, M.L., Carretero, O.A. Radiat. Res. (2004) [Pubmed]
  6. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1. Cohn, S.M., Schloemann, S., Tessner, T., Seibert, K., Stenson, W.F. J. Clin. Invest. (1997) [Pubmed]
  7. Apobec-1 protects intestine from radiation injury through posttranscriptional regulation of cyclooxygenase-2 expression. Anant, S., Murmu, N., Houchen, C.W., Mukhopadhyay, D., Riehl, T.E., Young, S.G., Morrison, A.R., Stenson, W.F., Davidson, N.O. Gastroenterology (2004) [Pubmed]
  8. Recombinant soluble transforming growth factor beta type II receptor ameliorates radiation enteropathy in mice. Zheng, H., Wang, J., Koteliansky, V.E., Gotwals, P.J., Hauer-Jensen, M. Gastroenterology (2000) [Pubmed]
  9. Intracolonic WR 2721 protection of the rat colon from acute radiation injury. France, H.G., Jirtle, R.L., Mansbach, C.M. Gastroenterology (1986) [Pubmed]
  10. How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. Ghosal, D., Omelchenko, M.V., Gaidamakova, E.K., Matrosova, V.Y., Vasilenko, A., Venkateswaran, A., Zhai, M., Kostandarithes, H.M., Brim, H., Makarova, K.S., Wackett, L.P., Fredrickson, J.K., Daly, M.J. FEMS Microbiol. Rev. (2005) [Pubmed]
  11. Effects of fractionated irradiation of endocrine aspects of testicular function. Shapiro, E., Kinsella, T.J., Makuch, R.W., Fraass, B.A., Glatstein, E., Rosenberg, S.A., Sherins, R.J. J. Clin. Oncol. (1985) [Pubmed]
  12. Role of ornithine decarboxylase in diallyl sulfide inhibition of colonic radiation injury in the mouse. Baer, A.R., Wargovich, M.J. Cancer Res. (1989) [Pubmed]
  13. Protection from radiation injury by elemental diet: does added glutamine change the effect? McArdle, A.H. Gut (1994) [Pubmed]
  14. Cu, Fe, Mn, and Zn chelates offer a medicinal chemistry approach to overcoming radiation injury. Sorenson, J.R. Current medicinal chemistry. (2002) [Pubmed]
  15. In vivo monitoring of hydroxyl radical generation caused by x-ray irradiation of rats using the spin trapping/EPR technique. Takeshita, K., Fujii, K., Anzai, K., Ozawa, T. Free Radic. Biol. Med. (2004) [Pubmed]
  16. Protective effect of dipyridamole against lethality and lipid peroxidation in liver and spleen of the ddY mouse after whole-body irradiation. Ueda, T., Toyoshima, Y., Moritani, T., Ri, K., Otsuki, N., Kushihashi, T., Yasuhara, H., Hishida, T. Int. J. Radiat. Biol. (1996) [Pubmed]
  17. Increased expression of cyclin B1 mRNA coincides with diminished G2-phase arrest in irradiated HeLa cells treated with staurosporine or caffeine. Bernhard, E.J., Maity, A., Muschel, R.J., McKenna, W.G. Radiat. Res. (1994) [Pubmed]
  18. Radiation effects on testes. XII. Monovalent electrolytes in relation to radiation injury of germinal epithelium. Gupta, G.S., Bawa, S.R. Radiat. Res. (1977) [Pubmed]
  19. Supplemental dietary arginine accelerates intestinal mucosal regeneration and enhances bacterial clearance following radiation enteritis in rats. Gurbuz, A.T., Kunzelman, J., Ratzer, E.E. J. Surg. Res. (1998) [Pubmed]
  20. Combined effect of procarbazine and ionizing radiation on mouse jejunal crypts. Connor, A.M., Sigdestad, C.P. Chemotherapy. (1978) [Pubmed]
  21. Prostaglandins as biochemical markers of radiation injury to the salivary glands after iodine-131 therapy? Rodrigues, M., Havlik, E., Peskar, B., Sinzinger, H. European journal of nuclear medicine. (1998) [Pubmed]
  22. Effect of misonidazole on radiation injury to mouse spinal cord. Travis, E.L., Parkins, C.S., Holmes, S.J., Down, J.D. Br. J. Cancer (1982) [Pubmed]
  23. Management of radiation injuries of vulva and vagina. Fraunholz, I.B., Schopohl, B., Böttcher, H.D. Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al]. (1998) [Pubmed]
  24. Does misonidazole enhance radiation injury to the central nervous system? Field, S.B., Morris, C.C. Br. J. Cancer (1981) [Pubmed]
  25. Protection of microcirculation in rat brain against late radiation injury by gammaphos. Plotnikova, E.D., Levitman, M.K., Shaposhnikova, V.V., Koshevoy JuV, n.u.l.l., Eidus, L.K. Int. J. Radiat. Oncol. Biol. Phys. (1984) [Pubmed]
  26. Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Kishi, K., Petersen, S., Petersen, C., Hunter, N., Mason, K., Masferrer, J.L., Tofilon, P.J., Milas, L. Cancer Res. (2000) [Pubmed]
  27. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-beta signaling by halofuginone. Xavier, S., Piek, E., Fujii, M., Javelaud, D., Mauviel, A., Flanders, K.C., Samuni, A.M., Felici, A., Reiss, M., Yarkoni, S., Sowers, A., Mitchell, J.B., Roberts, A.B., Russo, A. J. Biol. Chem. (2004) [Pubmed]
  28. Radiation sensitivity depends on OGG1 activity status in human leukemia cell lines. Hyun, J.W., Cheon, G.J., Kim, H.S., Lee, Y.S., Choi, E.Y., Yoon, B.H., Kim, J.S., Chung, M.H. Free Radic. Biol. Med. (2002) [Pubmed]
  29. CUGBP2 plays a critical role in apoptosis of breast cancer cells in response to genotoxic injury. Mukhopadhyay, D., Jung, J., Murmu, N., Houchen, C.W., Dieckgraefe, B.K., Anant, S. Ann. N. Y. Acad. Sci. (2003) [Pubmed]
  30. Radiation-induced changes in neuropeptides in the rat urinary bladder. Crowe, R., Vale, J., Trott, K.R., Soediono, P., Robson, T., Burnstock, G. J. Urol. (1996) [Pubmed]
  31. Modulation of the intestinal response to ionizing radiation by anticoagulant and non-anticoagulant heparins. Wang, J., Zheng, H., Qiu, X., Kulkarni, A., Fink, L.M., Hauer-Jensen, M. Thromb. Haemost. (2005) [Pubmed]
  32. Caffeine consumption is associated with decreased severe late toxicity after radiation to the pelvis. Stelzer, K.J., Koh, W.J., Kurtz, H., Greer, B.E., Griffin, T.W. Int. J. Radiat. Oncol. Biol. Phys. (1994) [Pubmed]
  33. Operation and permanent low activity 125I brachytheraphy for recurrent high-grade astrocytomas. Halligan, J.B., Stelzer, K.J., Rostomily, R.C., Spence, A.M., Griffin, T.W., Berger, M.S. Int. J. Radiat. Oncol. Biol. Phys. (1996) [Pubmed]
  34. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency. Lustig, R.H., Schriock, E.A., Kaplan, S.L., Grumbach, M.M. Pediatrics (1985) [Pubmed]
  35. Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model. Bertho, J.M., Frick, J., Prat, M., Demarquay, C., Dudoignon, N., Trompier, F., Gorin, N.C., Thierry, D., Gourmelon, P. Int. J. Radiat. Oncol. Biol. Phys. (2005) [Pubmed]
 
WikiGenes - Universities