The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression.

We have identified previously a novel complex mutant allele in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a patient affected with cystic fibrosis (CF). This allele contained a mutation in CFTR exon 11 known to cause CF (S549R(T>G)), associated with the first alteration described so far in the minimal CFTR promoter region (-102T>A). Studies on genotype-phenotype correlations revealed striking differences between patients carrying mutation (S549R(T>G)) alone, who had a severe disease, and patients carrying the complex allele (-102(T>A)+S549R(T>G)), who exhibited milder forms of CF. We thus postulated that the sequence change (-102T>A) may attenuate the effects of the severe (S549R(T>G)) mutation through regulation of CFTR expression. Analysis of transiently transfected cell lines with wild-type and -102A variant human CFTR-directed luciferase reporter genes demonstrates that constructs containing the -102A variant (which creates a Yin Yang 1 (YY1) core element) increases CFTR expression significantly. Electrophoretic mobility shift assays indicate that the -102 site is located in a region of multiple DNA-protein interactions and that the -102A allele recruits specifically an additional nuclear protein related to YY1. The finding that the YY1- binding allele causes a significant increase in CFTR expression in vitro may allow a better understanding of the milder phenotype observed in patients who carry a severe CF mutation within the same gene.[1]

References

  1. A naturally occurring sequence variation that creates a YY1 element is associated with increased cystic fibrosis transmembrane conductance regulator gene expression. Romey, M.C., Pallares-Ruiz, N., Mange, A., Mettling, C., Peytavi, R., Demaille, J., Claustres, M. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities