The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 
 

Thioredoxin participates in a cell death pathway induced by interferon and retinoid combination.

Interferons (IFNs) and retinoids are potent tumor growth suppressors. We have shown earlier that the IFN-beta and all-trans retinoic acid combination, but not the single agents, induces death in several tumor cell lines. Employing a genetic approach we have recently identified several Genes associated with Retinoid-IFN induced Mortality (GRIM) that mediate the cell death effect of IFN/RA combination. One of the GRIMs, GRIM-12, was identical to human thioredoxin reductase ( TR), an enzyme that controls intracellular redox state. To define the participants of TR mediated death pathway we have examined the role of thioredoxin (Trx), its downstream substrate, and its influence on IFN/RA-induced death regulation. Inhibition of the thioredoxin expression by antisense RNA suppressed cell death. Similarly, a mutant Trx1 lacking the critical cysteine residues blocked cell death. In contrast, overexpression of wildtype thioredoxin augmented cell death. This effect of Trx1 was in part due to its ability to augment cell death via caspase-8. The redox inactive Trx1 mutant inhibits the cell death induced by caspase-8 but not caspase-3. These studies identify a novel mechanism of cell death regulation by IFN/RA combination involving redox enzymes.[1]

References

  1. Thioredoxin participates in a cell death pathway induced by interferon and retinoid combination. Ma, X., Karra, S., Lindner, D.J., Hu, J., Reddy, S.P., Kimchi, A., Yodoi, J., Kalvakolanu, D.V., Kalvakolanu, D.D. Oncogene (2001) [Pubmed]
 
WikiGenes - Universities