The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53.

The MDM2 oncogene has both p53-dependent and p53-independent activities. We have previously reported that antisense MDM2 inhibitors have significant anti-tumor activity in multiple human cancer models with various p53 statuses (Zhang, Z., Li, M., Wang, H., Agrawal, S., and Zhang, R. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 11636-11641). We have also provided evidence that MDM2 has a direct role in the regulation of p21, a cyclin-dependent kinase inhibitor. Here we provide evidence supporting functional interaction between MDM2 and p21 in vitro and in vivo. The inhibition of MDM2 with anti-MDM2 antisense oligonucleotide or Short Interference RNA targeting MDM2 significantly elevated p21 protein levels in PC3 cells (p53 null). In contrast, overexpression of MDM2 diminished the p21 level in the same cells by shortening the p21 half-life, an effect reversed by MDM2 antisense inhibition. MDM2 facilitates p21 degradation independent of ubiquitination and the E3 ligase function of MDM2. Instead, MDM2 promotes p21 degradation by facilitating binding of p21 with the proteasomal C8 subunit. The physical interaction between p21 and MDM2 was demonstrated both in vitro and in vivo with the binding region in amino acids 180-298 of the MDM2 protein. In summary, we provide evidence supporting a physical interaction between MDM2 and p21. We also demonstrate that, by reducing p21 protein stability via proteasome-mediated degradation, MDM2 functions as a negative regulator of p21, an effect independent of both p53 and ubiquitination.[1]

References

  1. MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. Zhang, Z., Wang, H., Li, M., Agrawal, S., Chen, X., Zhang, R. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities