The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

MDM2 mediates p300/ CREB-binding protein-associated factor ubiquitination and degradation.

We recently reported that MDM2, a negative feedback regulator of the tumor suppressor p53, inhibits p300/ CREB-binding protein-associated factor (PCAF)-mediated p53 acetylation. Our further study showed that MDM2 also regulates the stability of PCAF. MDM2 ubiquitinated PCAF in vitro and in cells. PCAF ubiquitination occurred at the N terminus and in the nucleus, as the nuclear localization signal sequence-deletion mutant of MDM2, which localized in the cytoplasm and degraded p53, was unable to degrade nuclear PCAF. Restriction of PCAF in the nucleus by leptomycin B did not affect MDM2- mediated PCAF degradation. Consistently, overexpression of MDM2 in p53 null cells caused the reduction of the protein level of PCAF, but not the mRNA level. Conversely, PCAF levels were higher in MDM2-deficient mouse p53(-/-)/mdm2(-/-) embryonic fibroblast (MEF) cells than that in MDM2-containing MEF cells. Furthermore, MDM2 reduced the half-life of PCAF by 50%. These results demonstrate that MDM2 regulates the stability of PCAF by ubiquitinating and degrading this protein.[1]

References

  1. MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. Jin, Y., Zeng, S.X., Lee, H., Lu, H. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities