The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation.

Oxidation of LDL contributes to endothelial dysfunction and atherosclerosis. This process could be associated with hyperhomocysteinemia, a condition that can be reduced after folic acid treatment. Because a reduction in LDL oxidation may improve endothelial function, we studied the effect of some vitamins (folic acid, 5-methyltetrahydrofolic acid, and vitamin B-12) on LDL oxidation, either in the presence or absence of homocysteine. For this purpose, two in vitro systems were used: an endothelial cell-catalyzed LDL oxidation system and a cell-free copper-initiated LDL oxidation system. The kinetics of copper-catalyzed LDL oxidation was determined by continuous monitoring of the production of conjugated dienes in the reaction medium. TBARS production, a parameter of lipid peroxidation, was also evaluated. In both in vitro systems, only 5-methyltetrahydrofolic acid was able to decrease TBARS production in a concentration-dependent manner, independently of the presence or absence of homocysteine. In the copper-induced LDL oxidation system, vitamin B-12 and 5-methyltetrahydrofolic acid increased the lag time of conjugated diene production by 25 and 47%, respectively, suggesting that both vitamins in this system had antioxidant properties. Folic acid was unable to show antioxidant properties when included in either in vitro system. The results demonstrate that 5-methyltetrahydrofolic acid and vitamin B-12 are important protective agents against LDL oxidative modifications.[1]

References

  1. Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation. Ronco, A.M., Garrido, A., Llanos, M.N., Guerrero-Bosagna, C., Tamayo, D., Hirsch, S. Lipids (2005) [Pubmed]
 
WikiGenes - Universities