The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Metafolin     (2S)-2-[[4-[[(6S)-2-amino-5- methyl-4-oxo-1...

Synonyms: LEVOMEFOLATE, LMSR, Metafolin (TN), SureCN79586, CHEMBL1231574, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

 

Psychiatry related information on 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

 

High impact information on 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

 

Chemical compound and disease context of 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

 

Biological context of 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

 

Anatomical context of 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

 

Associations of 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID with other chemical compounds

 

Gene context of 5-METHYL-5,6,7,8-TETRAHYDROFOLIC ACID

  • This trap results from the fact that 5MTHF can neither be metabolised via the methionine synthase pathway, nor can it be reconverted to its precursor, methylenetetrahydrofolate [11].
  • In the copper-induced LDL oxidation system, vitamin B-12 and 5-methyltetrahydrofolic acid increased the lag time of conjugated diene production by 25 and 47%, respectively, suggesting that both vitamins in this system had antioxidant properties [19].
  • The selective MS detection and identification of endogenous 5-methyltetrahydrofolic acid in human plasma was accomplished through the development of a straightforward C18-based solid-phase extraction procedure [23].

References

  1. 5-Methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid (folinic acid), and folic acid requirements of normal and Rous sarcoma virus-infected chicken fibroblasts. Balk, S.D., LeStourgeon, D., Mitchell, R.S. Cancer Res. (1978) [Pubmed]
  2. Role of folate receptor and reduced folate carrier in the transport of 5-methyltetrahydrofolic acid in human ovarian carcinoma cells. Corona, G., Giannini, F., Fabris, M., Toffoli, G., Boiocchi, M. Int. J. Cancer (1998) [Pubmed]
  3. Pharmacokinetics and bioavailability of folic acid and plasma levels of bioactive folates after folic acid administration to pigs. Kokue, E., Sekiya, T., Shimoda, M., Natsuhori, M. The Veterinary quarterly. (1994) [Pubmed]
  4. Status of plasma folate after folic acid fortification of the food supply in pregnant African American women and the influences of diet, smoking, and alcohol consumption. Stark, K.D., Pawlosky, R.J., Beblo, S., Murthy, M., Flanagan, V.P., Janisse, J., Buda-Abela, M., Rockett, H., Whitty, J.E., Sokol, R.J., Hannigan, J.H., Salem, N. Am. J. Clin. Nutr. (2005) [Pubmed]
  5. Reduced folate transport to the CNS in female Rett patients. Ramaekers, V.T., Hansen, S.I., Holm, J., Opladen, T., Senderek, J., Häusler, M., Heimann, G., Fowler, B., Maiwald, R., Blau, N. Neurology (2003) [Pubmed]
  6. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. Rothberg, K.G., Ying, Y.S., Kolhouse, J.F., Kamen, B.A., Anderson, R.G. J. Cell Biol. (1990) [Pubmed]
  7. A phase II trial of 5-fluorouracil and high-dose intravenous leucovorin in gastric carcinoma. Arbuck, S.G., Douglass, H.O., Trave, F., Milliron, S., Baroni, M., Nava, H., Emrich, L.J., Rustum, Y.M. J. Clin. Oncol. (1987) [Pubmed]
  8. Transport of 5-methyltetrahydrofolic acid and folic acid in freshly isolated hepatocytes. Horne, D.W., Briggs, W.T., Wagner, C. J. Biol. Chem. (1978) [Pubmed]
  9. Determination of folate vitamers in human serum by stable-isotope-dilution tandem mass spectrometry and comparison with radioassay and microbiologic assay. Pfeiffer, C.M., Fazili, Z., McCoy, L., Zhang, M., Gunter, E.W. Clin. Chem. (2004) [Pubmed]
  10. Uptake of 5-methyltetrahydrofolic acid by the rat jejunum. Blair, J.A., Matty, A.J., Razzaque, A. J. Physiol. (Lond.) (1975) [Pubmed]
  11. Cellular folate vitamer distribution during and after correction of vitamin B12 deficiency: a case for the methylfolate trap. Smulders, Y.M., Smith, D.E., Kok, R.M., Teerlink, T., Swinkels, D.W., Stehouwer, C.D., Jakobs, C. Br. J. Haematol. (2006) [Pubmed]
  12. Biotransformation of pteroylmonoglutamic acid during absorption: implications of Michaelis-Menten kinetics. Lucock, M., Wild, J., Smithells, R., Hartley, R. European journal of clinical nutrition. (1989) [Pubmed]
  13. Inhibition of 5-methyltetrahydrofolic acid transport by amphipathic drugs. Branda, R.F., Nelson, N.L. Drug-nutrient interactions. (1981) [Pubmed]
  14. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Weitman, S.D., Lark, R.H., Coney, L.R., Fort, D.W., Frasca, V., Zurawski, V.R., Kamen, B.A. Cancer Res. (1992) [Pubmed]
  15. Transport of 5-methyltetrahydrofolic acid in erythrocytes from various mammalian species. Branda, R.F. J. Nutr. (1981) [Pubmed]
  16. Accumulation of 5-methyltetrahydrofolic acid and folylpolyglutamate synthetase expression by mitogen stimulated human lymphocytes. Fort, D.W., Lark, R.H., Smith, A.K., Marling-Cason, M., Weitman, S.D., Shane, B., Kamen, B.A. Br. J. Haematol. (1993) [Pubmed]
  17. Cerebral folate deficiency. Ramaekers, V.T., Blau, N. Developmental medicine and child neurology. (2004) [Pubmed]
  18. 5-methyltetrahydrofolic acid stimulates endothelin-1 production in low density lipoprotein-treated human endothelial cells. Ronco, A.M., Llanos, M., Tamayo, D., Hirsch, S. Nutrition, metabolism, and cardiovascular diseases : NMCD (2007) [Pubmed]
  19. Effect of homocysteine, folates, and cobalamin on endothelial cell- and copper-induced LDL oxidation. Ronco, A.M., Garrido, A., Llanos, M.N., Guerrero-Bosagna, C., Tamayo, D., Hirsch, S. Lipids (2005) [Pubmed]
  20. High-performance liquid chromatographic determination of methotrexate, 7-hydroxymethotrexate, 5-methyltetrahydrofolic acid and folinic acid in serum and cerebrospinal fluid. Belz, S., Frickel, C., Wolfrom, C., Nau, H., Henze, G. J. Chromatogr. B, Biomed. Appl. (1994) [Pubmed]
  21. Influence of subchronic exposure to low dietary deoxynivalenol, a trichothecene mycotoxin, on intestinal absorption of nutrients in mice. Hunder, G., Schümann, K., Strugala, G., Gropp, J., Fichtl, B., Forth, W. Food Chem. Toxicol. (1991) [Pubmed]
  22. Na+ and pH dependence of 5-methyltetrahydrofolic acid and methotrexate transport in freshly isolated hepatocytes. Horne, D.W. Biochim. Biophys. Acta (1990) [Pubmed]
  23. Preliminary application of liquid chromatography-electrospray-ionization mass spectrometry to the detection of 5-methyltetrahydrofolic acid monoglutamate in human plasma. Nelson, B.C., Dalluge, J.J., Margolis, S.A. J. Chromatogr. B Biomed. Sci. Appl. (2001) [Pubmed]
 
WikiGenes - Universities