The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DNA methylation affects the formation of active chromatin.

To study the mechanism of gene repression by DNA methylation, M13 gene constructs were methylated to completion and inserted into mouse L cells by DNA-mediated gene transfer. All unmethylated sequences, regardless of their source, integrated into the DNA in a potentially active DNAase I-sensitive conformation. Total CpG methylation prevented the formation of this structure and rendered these sequences DNAase I-insensitive over the entire methylated domain. Whereas unmethylated DNA demonstrated additional conformational features of active genes, such as DNAase I hypersensitivity and restriction endonuclease-sensitive segments, these markers were not present when methylated DNA was used for transfection. The use of micrococcal nuclease to probe for active or inactive supranucleosome particles also showed that DNA methylation directs DNA into an inactive type of structure. The results suggest that DNA methylation may exert its effect on gene transcription by altering both specific and nonspecific interactions between DNA and nuclear proteins.[1]

References

  1. DNA methylation affects the formation of active chromatin. Keshet, I., Lieman-Hurwitz, J., Cedar, H. Cell (1986) [Pubmed]
 
WikiGenes - Universities