Fourier-transform infrared studies on azide-binding to the binuclear center of the Escherichia coli bo-type ubiquinol oxidase.
Azide-binding to the heme-copper binuclear center of bo-type ubiquinol oxidase from Escherichia coli was investigated with Fourier-transform infrared spectroscopy. Deconvolution analyses of infrared spectra of the azide (14N3)-inhibited air-oxidized form showed a major infrared azide antisymmetric stretching band at 2041 cm(-1). An additional band developed at 2062.5 cm(-1) during a longer incubation. Isotope substitutions with terminally 15N-labelled azides did not show a splitting of the major band, indicating that the geometry of the bound azide is mainly in a bridging configuration between high-spin heme o and CuB. The band at 2062.5 cm(-1) showed clear splittings upon substitution with the terminally 15N-labelled azides, indicating the Cu(2+)B-N=N=N structure. Partial reduction of the oxidase with beta-NADH in the presence of azide caused an appearance of new infrared bands at 2038.5 (major) and 2009 (minor) cm(-1). The former band also showed clear splittings in the presence of the terminally 15N-labelled azides, indicating that reduction of low-spin heme b alters the structure of the binuclear center leading to the Fe(3+)o-N=N=N configuration.[1]References
- Fourier-transform infrared studies on azide-binding to the binuclear center of the Escherichia coli bo-type ubiquinol oxidase. Tsubaki, M., Mogi, T., Hori, H. FEBS Lett. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg