The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AG-K-05785     2-(3,7-dimethylocta-2,6- dienyl)-5,6...

Synonyms: CTK5A4893, AC1L1AN5, 56275-39-9, Ubiquinones, reduced, Ubiquinols;Reduced ubiquinones; Ubiquinol
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ubiquinol

 

Psychiatry related information on ubiquinol

 

High impact information on ubiquinol

  • Complex III (CIII; ubiquinol cytochrome c reductase of the mitochondrial respiratory chain) catalyzes electron transfer from succinate and nicotinamide adenine dinucleotide-linked dehydrogenases to cytochrome c. CIII is made up of 11 subunits, of which all but one (cytochrome b) are encoded by nuclear DNA [8].
  • As neither location will allow both reactions to proceed at a suitable rate, the reaction mechanism must involve movement of the extrinsic domain of the Fe-S component in order to shuttle electrons from ubiquinol to cytochrome c1 [9].
  • Cytochrome bc1 transfers electrons from ubiquinol to cytochrome c and uses the energy thus released to form an electrochemical gradient across the inner membrane [9].
  • Using the ultra-fast microfluidic mixer and the freeze-quenching device, coupled with EPR, we have been able to determine the presteady-state kinetics of ISP and cytochrome b(L) reduction by ubiquinol [10].
  • In both cases, when ETF-QO is reduced to a two-electron reduced state (one electron at each redox center), the enzyme is primed to reduce UQ to ubiquinol via FAD [11].
 

Chemical compound and disease context of ubiquinol

 

Biological context of ubiquinol

  • Cell respiration is catalyzed by the heme-copper oxidase superfamily of enzymes, which comprises cytochrome c and ubiquinol oxidases [12].
  • Ethane exhalation and vitamin E/ubiquinol status as markers of lipid peroxidation in ferrocene iron-loaded rats [17].
  • The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases [18].
  • To extend previous studies, we carried out alanine-scanning mutagenesis for selected 16-amino acid residues in subunit IV to explore subunit-subunit interactions in bo-type ubiquinol oxidase [19].
  • We report here nine novel cytochrome b structures conferring a variety of respiratory sufficient phenotypes, obtained from five respiratory deficient mutations affecting a short region of the protein (positions 131-138 of the polypeptide chain), presumably belonging to the ubiquinol oxidizing center of the bc1 complex [20].
 

Anatomical context of ubiquinol

  • Cytochrome o, one of the two terminal ubiquinol oxidases of Escherichia coli, is structurally and functionally related to cytochrome c oxidase of mitochondria and some bacteria [21].
  • The purified oxidase contains four polypeptides (MrS 66,000, 35,000, 22,000, and 17,000), two b-type cytochromes (b558 and b563), and 16-17 nmol of heme b per mg of protein, and it catalyzes the oxidation of ubiquinol and other electron donors with specific activities 20- to 30-fold higher than crude membranes [22].
  • An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans [3].
  • Preincubation of submitochondrial particles with specific antibody against subunit VII prior to addition of either succinate, NADH, or the reduced form of the decyl analogue of ubiquinol resulted in an approximately 40% increase in the extent of cytochrome c1 reduction compared with controls containing preimmune serum [23].
  • These properties suggest that the structural requirements for electron transfer from ubiquinol to cytochrome c are met by a small number of peptides and that the "extra" peptides occurring in the mitochondrial bc1 complexes serve some other function(s), possibly in biogenesis or insertion of the complex into that organelle [24].
 

Associations of ubiquinol with other chemical compounds

 

Gene context of ubiquinol

  • In Saccharomyces cerevisiae transcription of QCR8, encoding subunit VIII of the mitochondrial ubiquinol cytochrome c oxidoreductase, is subject to glucose repression, whereas in the distantly related yeast Kluyveromyces lactis it is not [30].
  • It encodes a 6.6-kD homolog of mitochondrial ubiquinol cytochrome c oxidoreductase (QCR9), subunit 9 of the bc(1) complex in yeast [31].
  • A mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency [32].
  • The purpose of this study is to evaluate the significance of the ubiquinol cytochrome c reductase UQCRFS1 gene amplification in primary breast cancers [33].
  • Our results suggest that both 14484 and 14459 mutations may affect amino acids forming the interaction site of ubiquinol product, and the 14484 mutation produces a biochemical defect resembling in part that already reported for the common 11778/ND4 LHON mutation [34].
 

Analytical, diagnostic and therapeutic context of ubiquinol

  • To elucidate the similarities as well as differences between ubiquinol and cytochrome c oxidases, we have analysed two-dimensional crystals of cytochrome bo by cryo-electron microscopy [1].
  • The heme axial ligands of bd-type ubiquinol oxidase of Escherichia coli were studied by EPR and optical spectroscopies using nitric oxide (NO) as a monitoring probe [35].
  • Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis [36].
  • The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method [37].
  • SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol [38].

References

  1. Projection structure of the cytochrome bo ubiquinol oxidase from Escherichia coli at 6 A resolution. Gohlke, U., Warne, A., Saraste, M. EMBO J. (1997) [Pubmed]
  2. Cytochrome a1 of acetobacter aceti is a cytochrome ba functioning as ubiquinol oxidase. Matsushita, K., Shinagawa, E., Adachi, O., Ameyama, M. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  3. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. Berry, E.A., Trumpower, B.L. J. Biol. Chem. (1985) [Pubmed]
  4. Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation. Robertson, D.E., Davidson, E., Prince, R.C., van den Berg, W.H., Marrs, B.L., Dutton, P.L. J. Biol. Chem. (1986) [Pubmed]
  5. Vitreoscilla hemoglobin binds to subunit I of cytochrome bo ubiquinol oxidases. Park, K.W., Kim, K.J., Howard, A.J., Stark, B.C., Webster, D.A. J. Biol. Chem. (2002) [Pubmed]
  6. Role of oxidative stress and antioxidants in male infertility. Sikka, S.C., Rajasekaran, M., Hellstrom, W.J. J. Androl. (1995) [Pubmed]
  7. The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Dhanasekaran, M., Ren, J. Current neurovascular research. (2005) [Pubmed]
  8. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. de Lonlay, P., Valnot, I., Barrientos, A., Gorbatyuk, M., Tzagoloff, A., Taanman, J.W., Benayoun, E., Chrétien, D., Kadhom, N., Lombès, A., de Baulny, H.O., Niaudet, P., Munnich, A., Rustin, P., Rötig, A. Nat. Genet. (2001) [Pubmed]
  9. Electron transfer by domain movement in cytochrome bc1. Zhang, Z., Huang, L., Shulmeister, V.M., Chi, Y.I., Kim, K.K., Hung, L.W., Crofts, A.R., Berry, E.A., Kim, S.H. Nature (1998) [Pubmed]
  10. Simultaneous reduction of iron-sulfur protein and cytochrome bL during ubiquinol oxidation in cytochrome bc1 complex. Zhu, J., Egawa, T., Yeh, S.R., Yu, L., Yu, C.A. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  11. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool. Zhang, J., Frerman, F.E., Kim, J.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  12. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S., Wikström, M. Nat. Struct. Biol. (2000) [Pubmed]
  13. Characterization of the exchangeable protons in the immediate vicinity of the semiquinone radical at the QH site of the cytochrome bo3 from Escherichia coli. Yap, L.L., Samoilova, R.I., Gennis, R.B., Dikanov, S.A. J. Biol. Chem. (2006) [Pubmed]
  14. Infrared and EPR studies on cyanide binding to the heme-copper binuclear center of cytochrome bo-type ubiquinol oxidase from Escherichia coli. Release of a CuB-cyano complex in the partially reduced state. Tsubaki, M., Mogi, T., Hori, H., Sato-Watanabe, M., Anraku, Y. J. Biol. Chem. (1996) [Pubmed]
  15. Networking antioxidants in the isolated rat heart are selectively depleted by ischemia-reperfusion. Haramaki, N., Stewart, D.B., Aggarwal, S., Ikeda, H., Reznick, A.Z., Packer, L. Free Radic. Biol. Med. (1998) [Pubmed]
  16. The reaction of nitric oxide with 6-hydroxydopamine: implications for Parkinson's disease. Riobó, N.A., Schöpfer, F.J., Boveris, A.D., Cadenas, E., Poderoso, J.J. Free Radic. Biol. Med. (2002) [Pubmed]
  17. Ethane exhalation and vitamin E/ubiquinol status as markers of lipid peroxidation in ferrocene iron-loaded rats. Dresow, B., Albert, C., Zimmermann, I., Nielsen, P. Hepatology (1995) [Pubmed]
  18. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. Chepuri, V., Lemieux, L., Au, D.C., Gennis, R.B. J. Biol. Chem. (1990) [Pubmed]
  19. Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis. Saiki, K., Mogi, T., Tsubaki, M., Hori, H., Anraku, Y. J. Biol. Chem. (1997) [Pubmed]
  20. Pseudo-wild type revertants from inactive apocytochrome b mutants as a tool for the analysis of the structure/function relationships of the mitochondrial ubiquinol-cytochrome c reductase of Saccharomyces cerevisiae. di Rago, J.P., Netter, P., Slonimski, P.P. J. Biol. Chem. (1990) [Pubmed]
  21. The heme groups of cytochrome o from Escherichia coli. Puustinen, A., Wikström, M. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  22. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Matsushita, K., Patel, L., Gennis, R.B., Kaback, H.R. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  23. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein. Japa, S., Beattie, D.S. J. Biol. Chem. (1989) [Pubmed]
  24. Purification of a three-subunit ubiquinol-cytochrome c oxidoreductase complex from Paracoccus denitrificans. Yang, X.H., Trumpower, B.L. J. Biol. Chem. (1986) [Pubmed]
  25. Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein. Ingold, K.U., Bowry, V.W., Stocker, R., Walling, C. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  26. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Frei, B., Kim, M.C., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  27. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone-binding site. Yamada, M., Sumi, K., Matsushita, K., Adachi, O., Yamada, Y. J. Biol. Chem. (1993) [Pubmed]
  28. Characterization of Mutants That Change the Hydrogen Bonding of the Semiquinone Radical at the QH Site of the Cytochrome bo3 from Escherichia coli. Yap, L.L., Samoilova, R.I., Gennis, R.B., Dikanov, S.A. J. Biol. Chem. (2007) [Pubmed]
  29. Functional insensitivity of the cytochrome b6f complex to structure changes in the hinge region of the Rieske iron-sulfur protein. Yan, J., Cramer, W.A. J. Biol. Chem. (2003) [Pubmed]
  30. Distinct transcriptional regulation of a gene coding for a mitochondrial protein in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis despite similar promoter structures. Mulder, W., Scholten, I.H., Grivell, L.A. Mol. Microbiol. (1995) [Pubmed]
  31. The oxen gene of Drosophila encodes a homolog of subunit 9 of yeast ubiquinol-cytochrome c oxidoreductase complex: evidence for modulation of gene expression in response to mitochondrial activity. Frolov, M.V., Benevolenskaya, E.V., Birchler, J.A. Genetics (2000) [Pubmed]
  32. A mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency. Valnot, I., Kassis, J., Chretien, D., de Lonlay, P., Parfait, B., Munnich, A., Kachaner, J., Rustin, P., Rötig, A. Hum. Genet. (1999) [Pubmed]
  33. Ubiquinol cytochrome c reductase (UQCRFS1) gene amplification in primary breast cancer core biopsy samples. Ohashi, Y., Kaneko, S.J., Cupples, T.E., Young, S.R. Gynecol. Oncol. (2004) [Pubmed]
  34. Biochemical features of mtDNA 14484 (ND6/M64V) point mutation associated with Leber's hereditary optic neuropathy. Carelli, V., Ghelli, A., Bucchi, L., Montagna, P., De Negri, A., Leuzzi, V., Carducci, C., Lenaz, G., Lugaresi, E., Degli Esposti, M. Ann. Neurol. (1999) [Pubmed]
  35. EPR study of NO complex of bd-type ubiquinol oxidase from Escherichia coli. Hori, H., Tsubaki, M., Mogi, T., Anraku, Y. J. Biol. Chem. (1996) [Pubmed]
  36. Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis. Lemieux, L.J., Calhoun, M.W., Thomas, J.W., Ingledew, W.J., Gennis, R.B. J. Biol. Chem. (1992) [Pubmed]
  37. QO site deficiency can be compensated by extragenic mutations in the hinge region of the iron-sulfur protein in the bc1 complex of Saccharomyces cerevisiae. Brasseur, G., Lemesle-Meunier, D., Reinaud, F., Meunier, B. J. Biol. Chem. (2004) [Pubmed]
  38. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Forsmark-Andrée, P., Dallner, G., Ernster, L. Free Radic. Biol. Med. (1995) [Pubmed]
 
WikiGenes - Universities