The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protein threading by recursive dynamic programming.

We present the recursive dynamic programming (RDP) method for the threading approach to three-dimensional protein structure prediction. RDP is based on the divide-and-conquer paradigm and maps the protein sequence whose backbone structure is to be found (the protein target) onto the known backbone structure of a model protein (the protein template) in a stepwise fashion, a technique that is similar to computing local alignments but utilising different cost functions. We begin by mapping parts of the target onto the template that show statistically significant similarity with the template sequence. After mapping, the template structure is modified in order to account for the mapped target residues. Then significant similarities between the yet unmapped parts of the target and the modified template are searched, and the resulting segments of the target are mapped onto the template. This recursive process of identifying segments in the target to be mapped onto the template and modifying the template is continued until no significant similarities between the remaining parts of target and template are found. Those parts which are left unmapped by the procedure are interpreted as gaps.The RDP method is robust in the sense that different local alignment methods can be used, several alternatives of mapping parts of the target onto the template can be handled and compared in the process, and the cost functions can be dynamically adapted to biological needs.Our computer experiments show that the RDP procedure is efficient and effective. We can thread a typical protein sequence against a database of 887 template domains in about 12 hours even on a low-cost workstation (SUN Ultra 5). In statistical evaluations on databases of known protein structures, RDP significantly outperforms competing methods. RDP has been especially valuable in providing accurate alignments for modeling active sites of proteins.RDP is part of the ToPLign system ( GMD Toolbox for protein alignment) and can be accessed via the WWW independently or in concert with other ToPLign tools at http://cartan.gmd.de/ToPLign.html.[1]

References

  1. Protein threading by recursive dynamic programming. Thiele, R., Zimmer, R., Lengauer, T. J. Mol. Biol. (1999) [Pubmed]
 
WikiGenes - Universities